期刊导航

论文摘要

一类具曲率算子的非线性方程波前解

Traveling wavefronts for a kind of nonlinear equation with mean curvature-like operator

作者:鲁世平(南京信息工程大学数理学院);孔凡超(安徽师范大学数学计算机及科学学院);李洁(安徽师范大学数学计算机及科学学院)

Author:LU Shi-Ping(College of Mathematics and Statistics, NUIST);KONG Fan-Chao(College of Mathematics and Computer Science, Anhui Normal University);LI Jie(College of Mathematics and Computer Science, Anhui Normal University)

收稿日期:2015-07-11          年卷(期)页码:2017,54(4):693-697

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:波前解, 异宿轨道, 平均曲率算子

Key words:Traveling wavefront; Heteroclinic orbit; Mean curvature-like operator

基金项目:国家自然科学基金(No:11271197)

中文摘要

本文我们考虑了以下一类具有曲率算子的非线性方程 $$\frac{\partial q(x,t)}{\partial t}+\frac{\partial}{\partial x}(\frac{\frac{\partial q(x,t)}{\partial x}}{\sqrt{1+(\frac{\partial q(x,t)}{\partial x})^{2}}})-g(q(x,t))=0.$$通过运用单调动力系统定理, 我们建立了方程波前解的存在性条件.

英文摘要

In this paper, we study the following nonlinear equation with mean curvature-like operator$$\frac{\partial q(x,t)}{\partial t}+\frac{\partial}{\partial x}(\frac{\frac{\partial q(x,t)}{\partial x}}{\sqrt{1+(\frac{\partial q(x,t)}{\partial x})^{2}}})-g( q(x,t))=0.$$ By using the theorem of the monotone dynamical system, the existence conditions of traveling wavefronts is established.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065