期刊导航

论文摘要

基于卡尔曼滤波的动态权值融合

Dynamic weighting fusion based on kalman filter

作者:杨晓丹(四川大学计算机学院);王运锋(四川大学计算机学院);张小琴(阿坝师范学院生化系)

Author:YANG Xiao-Dan(College of Computer Science, Sichuan University);WANG Yun-Feng(College of Computer Science, Sichuan University);ZHANG Xiao-Qin(ABa Teachers University, Chemical and Life Science Department)

收稿日期:2016-10-08          年卷(期)页码:2017,54(5):947-952

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:航迹融合;加权平均;动态权值;卡尔曼滤波

Key words:track fusion; weighted average; dynamic weight; Kalman filter

基金项目:国家空管科研课题(GKG201403001)

中文摘要

在雷达航迹融合过程中,采用多传感器测量值融合的方法能够摒除单一信息源不全面的缺点。加权平均融合为广泛使用的融合方法,但传统的权值固定的加权平均融合虽然能综合多路传感器信息,却无法自适应的根据测量值优劣倚重更有利的测量信息。因此,本文提出将固定权值改进为动态权值的融合方法,实时改变各路测量信息参与融合的权重。每次融合前,先将多路传感器测量值求简单算术平均后进行卡尔曼滤波,把滤波后的值与各路测量值作差,这相当于对传感器信息的优劣作出预判,每路测量信息的融合权值则与该差绝对值成反比。最后,通过仿真实验证明,该改进方法较之前的加权平均融合明显提高了目标的融合精度。

英文摘要

Multiple sensor measurement fusion can strip away the shortcomings of a single source which the information is not comprehensive in the process of radar track fusion. Weighted average fusion is widely used. The weighted average fusion of traditional and weights fixed can only combine with information from multiple sensors, but not pick out better information adaptively. Therefore, this paper suggests changing the fixed weight to dynamic weight. Before every fusion, calculating simple arithmetic average of multiple sensor measurements, then performing Kalman filter. Making the measurements subtract the values from Kalman filter. That is equivalent to make prediction for distinguishing data of stand or fall. And the dynamic weight is inversely proportional to the value using for prediction. Finally, the simulation experiments prove that the method in this paper can improve the precision of the fusion of target significantly.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065