期刊导航

论文摘要

Black-Scholes方法的三次三角B-样条配点法

Cubic Trigonometric B-spline Collocation Approach for Black-Scholes Method

作者:吴蓓蓓(同济大学数学科学学院; 上海电力学院数理学院);殷俊锋(同济大学数学科学学院);金猛(同济大学数学科学学院)

Author:WU Bei-Bei(School of Mathematics Science, Tongji University; School of Mathematics and Physics, Shanghai University of Electric Power);YIN Jun-Feng(School of Mathematics Science, Tongji University);JIN Meng(School of Mathematics Science, Tongji University)

收稿日期:2017-03-05          年卷(期)页码:2017,54(6):1153-1158

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:期权定价;Black-Scholes方程;三次三角B-样条;有限差分;三次B-样条

Key words:option pricing;Black-Scholes equation;cubic trigonometric B-spline;finite difference;cubic B-spline

基金项目:国家自然科学基金,中央高校基本科研业务费专项资金

中文摘要

研究Black-Scholes欧式期权定价模型的三次三角B-样条配点法. 对Black-Scholes方程空间离散采用三次三角B-样条配点法和时间离散采用向前有限差分,并引入参数θ,建立混合差分格式. 利用稳定性分析的Von Neumann (Fourier)方法,证明了该格式当1/2≤θ≤1时是无条件稳定的. 数值实验表明,所构造方法的有效性和准确性,其数值结果优于Crank-Nicolson有限差分法和三次B-样条方法.

英文摘要

A cubic trigonometric B-spline collocation approach is developed for the numerical solution of Black-Scholes equation governing European option pricing. The Black-Scholes equation is fully-discretized using the cubic trigonometric B-spline collocation for spatial discretization and the forward finite difference for the time discretization. A hybrid difference scheme is obtained by means of parameter θ. According to Von Neumann (Fourier) method, it is shown that the presented scheme is unconditionally stable for 1/2≤θ≤1. A numerical experiment is performed to illustrate the validity and accuracy of the proposed method. Moreover, the numerical results are given to show that it is superior to Crank-Nicolson finite difference method and cubic B-spline collocation approach.

下一条:非定常Navier-Stokes 方程基于H(div)型有限元的涡旋黏性法

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065