期刊导航

论文摘要

文化算法框架下混合群智能算法的肿瘤信息基因选择

Cancer gene selection by hybrid swarm algorithm based on cultural algorithm

作者:张浩(皖南医学院计算机教研室);叶明全(皖南医学院计算机教研室);汪楠(安庆职业技术学院电子信息系)

Author:ZHANG Hao(Department of Computer,Wannan Medical College);YE Ming-Quan(Department of Computer,Wannan Medical College);WANG Nan(Department ofElectronic Information, Anqing Vocational and Technical College)

收稿日期:2014-09-28          年卷(期)页码:2015,52(3):573-579

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:信息基因; ReliefF算法; 人工鱼群算法; 粒子群优化算法

Key words:Feature gene; ReliefF algorithm; Artificial fish swarm algorithm; Particle swarm optimization algorithm

基金项目:安徽省高校自然科学研究重点项目(KJ2014A266)

中文摘要

为了消除与分类无关和冗余基因, 以提高基因的分类精度和效率, 提出一种文化算法框架下混合群智能算法的肿瘤信息基因选择方法. 首先采用ReliefF算法初选基因子集, 然后利用文化算法框架下混合群智能算法选择最优的信息基因, 最后在3个标准肿瘤信息基因数据集对其性能进行测试. 仿真结果表明, 文化算法框架下混合群智能算法可以有效去掉无用的噪声基因, 降低计算复杂度, 分类精度均可以达到100%, 具有较好的实际应用价值.

英文摘要

In order to eliminate irrelevant and redundant genes and improve the classification accuracy and efficiency, this paper proposed a cancer gene selection method by hybrid swarm algorithm based on cultural algorithm. Firstly, ReliefF algorithm is used to select the primary gene subset, and then hybrid swarm algorithm based on cultural algorithm is used to select the optimal information gene. Finally, the performance is tested by three standard tumor information gene data set. The simulation results show that the proposed method can remove noise and useless and reduce the computing complexity, the classification accuracy can reach 100%, and has good practical value.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065