期刊导航

论文摘要

原油产能预测中色谱指纹的特征选取方法研究

Feature selection of chromatographic fingerprints for oil production prediction

作者:杨晓敏(四川大学电子信息学院);吴炜(四川大学电子信息学院);苏冰山(四川大学电子信息学院);宋亚东(四川大学电子信息学院)

Author:YANG Xiao-Min(College of Electronics and Information Engineering, Sichuan University);WU Wei(College of Electronics and Information Engineering, Sichuan University);SU Bing-Shan(College of Electronics and Information Engineering, Sichuan University);SONG Ya-Dong(College of Electronics and Information Engineering, Sichuan University)

收稿日期:2014-07-16          年卷(期)页码:2015,52(4):808-812

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:单层产能贡献;特征选择;主分量分析;随机森林

Key words:Single zone productivity contribution; Feature selection; Principal component analysis; Random forest

基金项目:国家自然基金(61271330);中国博士后基金(2014M552357);高等学校博士学科点专项科研基金(20130181120005);重点实验室资助项目(12R03)和四川省科技支撑计划 ( 2014GZ0005)

中文摘要

通过动态监测油井分油层的产能可以掌握油井的生产状况,监测产能在油田生产中具有重要的意义.目前基于色谱指纹的产能预测越来越受到油田相关部门的重视,但是目前色谱指纹的选取还是依靠专业技术人员进行选取,这导致特征选取存在一定的主观性.到目前为止还没有研究者对色谱指纹特征的选择问题进行系统的研究.为了对色谱指纹特征选取问题进行分析,本文分别采用主成分分析(PCA)、线性相关以及随机森林中的重要性分析理论进行特征选取,最后提出了一种新的联合特征选取方法.对来自南海某油田的配比数据进行了测试,实验结果表明,本文提出的方法取得了很好的试验效果,在原油产能预测领域有较大的应用价值.

英文摘要

It is of importance to monitor the production status of oil wells. Nowadays, more and more oilfields use chromatographic fingerprint to monitor Single zone productivity contribution. However how to select chromatographic fingerprint is still a problem, the current selection of chromatographic fingerprint relies on professional experts, which leads to a certain degree of subjectivity. So far, to our knowledge no research was done on the choice of chromatographic fingerprints. In order to analyze chromatographic fingerprint, principal component analysis (PCA), linear correlation method and variable importance in random forest are used in this paper. Then, a joint feature selection method, which combines two methods, is proposed. Experimental results with oil from an oil field of South China Sea show that the proposed method achieves very good results.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065