期刊导航

论文摘要

基于局部多项式逼近的图像去噪

Image de noising based on local polynomial approximation

作者:刘倩倩(四川大学电子信息学院);何 坤(四川大学电子信息学院);周激流(四川大学电子信息学院);黎思敏(四川大学电子信息学院)

Author:LIU Qian Qian(College of Electronics and Information Engineering, Sichuan University);HE Kun(College of Electronics and Information Engineering, Sichuan University);ZHOU Ji Liu(College of Electronics and Information Engineering, Sichuan University);LI Si Min(College of Electronics and Information Engineering, Sichuan University)

收稿日期:2014-11-29          年卷(期)页码:2015,52(5):1001-1006

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:图像去噪;局部多项式逼近;置信区间法则;逼近尺度

Key words:Image de noising; LPA; ICI; The ideal scale

基金项目:四川省科技支撑项目(2013SF0157)

中文摘要

为了兼得传统图像去噪算法的保边性与高效性的优点,本文根据图像空间相关性,设计了图像局部多项式逼近函数,理论上分析了局部逼近尺度,建立了局部多项式逼近去噪算法:首先对图像像素进行多项式拟合,构造局部多项式逼近函数;其次采用置信区间交集法则自适应选择局部多项式的逼近尺度;最后采用逼近算法对高斯噪声图像进行去噪.实验结果表明,本文算法继承了各向同性扩散的高效性和各向异性的保边性,同时弥补了各向异性扩散实时性较差的不足

英文摘要

In order to have the advantages of edge protecting and high efficiency of traditional methods of image de noising, according to the correlation of image’s space pixels, the paper has designed the local polynomial approximation function, analyzed the local approximation theoretically and established the algorithm of local polynomial approximation (LPA).For the noise image, first, made the polynomial fitting for the image pixel, structured the local polynomial approximation function. Second, used intersection of confidence intervals (ICI) rule to select the ideal scale of the local polynomial adaptively. Finally, adopted the algorithm of LPA to de noise the Gaussian noisy image. Experimental results show that the algorithm inherits the traditional isotropic de noising algorithms advantage of high efficiency and makes up for the anisotropy de noising algorithms shortcomings that the computation time is too long, so it cant meet the needs of the real time requirement.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065