期刊导航

论文摘要

带等式状态约束的集合卡尔曼滤波算法

Ensemble Kalman filter with state equality constraints

作者:谢莉清(四川大学数学学院);何腊梅(四川大学数学学院)

Author:XIE Li-Qing(ollege of Mathematics, Sichuan University);HE La-Mei(college of Mathematics, Sichuan University)

收稿日期:2014-09-04          年卷(期)页码:2015,52(5):958-962

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:非线性系统;集合卡尔曼滤波;估计投影;状态约束

Key words:Nonlinear system; Ensemble Kalman filter; Estimate projection; State constraints

基金项目:国家自然科学基金(61374027); 数学地质四川省重点实验室开放基金资助项目(scsxdz2011006)

中文摘要

对含等式状态约束的非线性系统状态估计问题,本文考虑将集合卡尔曼滤波算法与估计投影方法结合,分别对每个状态粒子和加权平均后的状态估计向量使用估计投影方法,得到两种新的带约束的状态估计算法. 实验表明,与粒子滤波和不带约束的集合卡尔曼滤波相比,新算法的估计精度有所提高

英文摘要

For the problem of state estimation for nonlinear systems with state equality constraints, the method that combines ensemble Kalman filter with estimate projection approaches is presented. We derive two new state estimation algorithms with constraints, by using estimate projection method for each particle of state estimation and state estimation vector after calculating weighted average respectively. The simulation shows that the new algorithms perform better in terms of estimation accuracy, comparing to particle filter and unconstrained ensemble Kalman filter.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065