期刊导航

论文摘要

三维离散类Lorenz系统的Neimark sacker分岔

An analysis of Neimark sacker bifurcation for a new three dimensional discrete Lorenz like system

作者:杜文举(兰州交通大学交通运输学院);张建刚(兰州交通大学数理学院);俞建宁(兰州交通大学交通运输学院);安新磊(兰州交通大学数理学院)

Author:DU Wen Ju(School of Traffic and Transportation; Lanzhou Jiaotong University);ZHANG Jian Gang(School of Mathematics and Physics, Lanzhou Jiaotong University);YU Jian Ning(School of Traffic and Transportation; Lanzhou Jiaotong University);AN Xin Lei(School of Mathematics and Physics, Lanzhou Jiaotong University)

收稿日期:2014-11-30          年卷(期)页码:2015,52(6):1297-1302

期刊名称:四川大学学报: 自然科学版

Journal Name:Journal of Sichuan University (Natural Science Edition)

关键字:. 离散类Lorenz系统; 稳定性; 中心流形定理;Neimark Sacker分岔

Key words:Discrete Lorenz like system; Stability; Center manifold theorem; Neimark Sacker bifurcation

基金项目:国家自然科学基金(61364001; 11161027);教育部科技研究重点项目(212180)

中文摘要

应用欧拉差分方法,构造了一个新的三维离散类Lorenz系统.讨论了该三维离散动力系统的动力学性质,分析了其不动点的存在性和稳定性.基于Neimark Sacker分岔准则、中心流形定理和范式理论,研究了该系统Neimark Sacker分岔的存在性、稳定性和方向.最后,通过数值仿真证明理论分析的正确性

英文摘要

A new three dimensional discrete Lorenz like system is proposed by using forward Euler scheme. The dynamics of this three dimensional discrete Lorenz like system is considered, and the existence and stability of equilibrium are also discussed. Based on explicit Neimark Sacker bifurcation criterion, center manifold theory and normal form method, the system’s existence, stability and direction of Neimark Sacker bifurcation are studied. Finally, a numerical example is provided for justifying the validity of the theoretical analysis.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065