可用于肼检测的新型近红外荧光探针的合成及初步性能研究
Synthesis and preliminary properties of a novel near-infrared fluorescent probe for hydrazine detection
作者:宋艳;黄文才;齐庆蓉;
Author:
收稿日期: 年卷(期)页码:2019,34(04):-325-331
期刊名称:华西药学杂志
Journal Name:WEST CHINA JOURNAL OF PHARMACEUTICAL SCIENCES
关键字:近红外;荧光探针;4-溴丁酸酯;半花菁;肼检测;合成;紫外吸收;荧光发射;性能
Key words:
基金项目:重大新药创制综合平台建设项目(2013ZX09402103)
中文摘要
目的制备以4-溴丁酸酯为肼检测位点的近红外荧光探针(Hcy-N_2H_4),并对其进行初步性能研究。方法3-溴丙烷与2,3,3-三甲基-3H吲哚反应生成季铵盐(Cye-m),进而与2-氯-3-羟次甲基环己烯醛缩合成双取代产物(Cye),再与间苯二酚环化成半花菁染料(Hcy),最后与活化后的4-溴丁酸成酯反应,得到目标产物Hcy-N_2H_4。测定该探针在响应肼前、后的最大吸收波长、发射波长及相应的强度变化,计算探针对肼的检测限并考察其选择性。结果成功制备了探针Hcy-N_2H_4,其化学结构经~1HNMR、~(13)CNMR、HRMS确证。探针Hcy-N_2H_4的水溶性良好,对肼响应后的最大发射波长位于近红外区的715 nm,有较大的斯托克斯位移(约125 nm)。同时,该探针与肼反应前后能够通过裸眼观察到明显的颜色变化。探针Hcy-N_2H_4对肼的检测限为78. 04μmol·L~(-1),且对干扰物质的选择性良好。结论近红外荧光探针Hcy-N_2H_4具有水溶性好、检测限低、选择性高等优点,有望用于生物体内、外肼的检测。
参考文献
[1] Ragnarsson. Synthetic methodology for alkyl substituted hydrazines[J]. Chem Soc Rev,2001,30(4):205-213.
[2] Sanabria-Chinchilla J,Asazawa K,Sakamoto T,et al. Noble metal-free hydrazine fuel cell catalysts:EPOC effect in competing chemical and electrochemical reaction pathways[J]. J Am Chem Soc,2011,133(14):5425-5431.
[3] Yamada K,Yasuda K,Fujiwara N,et al. Potential application of anion-exchange membrane for hydrazine fuel cell electrolyte[J]. Electrochem Commun,2003,5(10):892-896.
[4] Zelnick SD,Mattie DR,Stepaniak PC. Occupational exposure to hydrazines:Treatment of acute central nervous system toxicity[J]. Aviat Space Environ Med,2003,74(12):1285-1291.
[5] Sutton AD,Burrell AK,Dixon DA,et al. Regeneration of ammonia borane spent fuel by direct reaction with hydrazine and liquid ammonia[J]. Science,2011,331(6023):1426-1429.
[6] Lan R,Irvine JTS,Tao S,et al. Ammonia and related chemicals as potential indirect hydrogen storage materials[J]. Int J Hydrogen Energy,2012,37(2):1482-1494.
[7] Pinter JS,Brown KL,Deyoung PA,et al. Amperometric detection of hydrazine by cyclic voltammetry and flow injection analysis using ruthenium modified glassy carbon electrodes[J]. Talanta,2007,71(3):1219-1225.
[8] Garrod S,Bollard ME,Nicholls AW,et al. Integrated metabonomic analysis of the multiorgan effects of hydrazine toxicity in the rat[J]. Chem Res Toxicol,2005,18(2):115-122.
[9] Sun M,Bai L,Liu DQ. A generic approach for the determination of trace hydrazine in drug substances using in situ derivatization-headspace GC-MS[J]. J Pharm Biomed Anal,2009,49(2):529-533.
[10] Kong F,Ge L,Pan X,et al. A highly selective near-infrared fluorescent probe for imaging H2Se in living cells and in vivo[J]. Chem Sci,2016,7(2):1051-1056.
[11] Yin J,Kwon Y,Kim D,et al. Preparation of a cyanine-based fluorescent probe for highly selective detection of glutathione and its use in living cells and tissues of mice[J]. Nat Protoc,2015,10(11):1742-1754.
[12] Mahapatra AK,Maji R,Maiti K,et al. A BODIPY/pyrenebased chemodosimetric fluorescent chemosensor for selective sensing of hydrazine in the gas and aqueous solution state and its imaging in living cells[J]. RSC Adv,2015,5(72):58228-58236.
[13] Zhou J,Shi R,Liu J,et al. An ESIPT-based fluorescent probe for sensitive detection of hydrazine in aqueous solution[J]. Org Biomol Chem,2015,13(19):5344-5348.
[14] Yuan L,Lin W,Zheng K,et al. Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging[J]. Chem Soc Rev,2013,42(2):622-661.
[15] Lu Z,Shi X,Ma Y,et al. A simple two-output nearinfrared fluorescent probe for hydrazine detection in living cells and mice[J]. Sens Actuators B Chem,2018,258:42-49.
[16]潘玲,郭丽,罗圣霖,等.新型吲哚七甲川菁染料作为光声成像造影剂的初步研究[J].华西药学杂志,2017,32(2):113-116.
[17] Yang SH,Sun Q,Xiong H,et al. Discovery of a butyrylcholinesterase-specific probe via a structure-based design strategy[J]. Chem Commun,2017,53(28):3952-3955.
[18] Zep A,Aya S,Aihara K,et al. Multiple nematic phases observed in chiral mesogenic dimers[J]. J Mater Chem C,2013,1(1):46-49.
[19] Yuan L,Lin W,Zhao S,et al. A unique approach to development of near-infrared fluorescent sensors for in vivo imaging[J]. J Am Chem Soc Art,2012,134(32):13510-13523.
【关闭】