调控肝脏转运体对肝脏疾病防治的意义
Significance of regulating liver transporters in the prevention and treatment of liver diseases
作者:杨玉洁;刘蕾;徐苗;王凌;蒋学华;
Author:
收稿日期: 年卷(期)页码:2020,35(03):-316-324
期刊名称:华西药学杂志
Journal Name:WEST CHINA JOURNAL OF PHARMACEUTICAL SCIENCES
关键字:肝脏转运体;肝脏疾病;核转录因子调控;表观遗传修饰;药动学;有机阳离子转运体;有机阴离子转运体;摄取型转运体;外排型转运体
Key words:
基金项目:国家自然科学基金资助项目(批准号:8157141040)
中文摘要
人肝脏丰富地表达着多种转运体,疾病状态下、遗传因素的改变或药物之间的相互作用,常使代谢调节系统受到不同程度的影响,导致转运体表达发生变化,从而导致药物在体内暴露量以及响应的变化,进而影响到机体代谢调节系统,影响疾病的发生发展。因此,调控转运体的表达,以维持正常状态下肝脏转运体的表达或逆转疾病状态下肝脏转运体表达的改变,对肝脏疾病防治具有重要意义。现综述肝脏转运体与肝脏疾病之间关系,为肝脏疾病的防治开拓新的思路,寻找新的靶点,并为以转运体调控研究来实现肝脏疾病的防治奠定了理论基础。
参考文献
[1] Mooij MG,Nies AT,Knibbe CA,et al.Development of human membrane transporters:Drug disposition and pharmacogenetics[J].Clin Pharmacokinet,2016,55(5):507-524.
[2] Riley RJ,Foley SA,Barton P,et al.Hepatic drug transporters:The journey so far[J].Expert Opin Drug Metabol Toxicol,2016,12(2):201-216.
[3] Brian W,Tremaine LM,Arefayene M,et al.Assessment of drug metabolism enzyme and transporter pharmacogenetics in drug discovery and early development:Perspectives of the I-PWG[J].Pharmacogenomics,2016,17(6):615-631.
[4] Trauner M,Fuchs CD,Halilbasic E,et al.New therapeutic concepts in bile acid transport and signaling for management of cholestasis[J].Hepatology,2017,65(4):1393-1404.
[5] Qiu JW,Deng M,Cheng Y,et al.Sodium taurocholate cotransporting polypeptide (NTCP) deficiency:Identification of a novel SLC10A1 m utation in two unrelated infants presenting with neonatal indirect hyperbilirubinemia and remarkable hypercholanemia[J].Oncotarget,2017,8(63):106598-106607.
[6] Yan H,Zhong GC,Xu GW,et al.Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus[J].Elife,2012,1:e00049.
[7] Alrefai WA,Gill RK.Bile acid transporters:Structure,function,regulation and pathophysiological implications[J].Pharm Res,2007,24(10):1803-1823.
[8] Farasyn T,Crowe A,Hatley O,et al.Preincubation with everolimus and sirolimus reduces organic anion-transporting polypeptide (OATP)1B1- and 1B3-mediated transport independently of mTOR kinase inhibition:Implication in assessing OATP1B 1- and OATP1B3-mediated drug-drug interactions[J].J Pharm Sci,2019,108(10):3443-3456.
[9] Koepsell H,Endou H.The SLC22 drug transporter family[J].Pflugers Arch,2004,447(5):666-676.
[10] Damme K,Nies AT,Schaeffeler E,et al.Mammalian MATE (SLC47A) transport proteins:Impact on efflux of endogenous substrates and xenobiotics[J].Drug Metab Rev,2011,43(4):499-523.
[11] Keppler D.The Roles of MRP2,MRP3,OATP1B1,and OATP1B3 in conjugated hyperbilirubinemia[J].Drug Metab Dispos,2014,42(4):561-565.
[12] Dr?ge C,Bonus M,Baumann U,et al.Sequencing of FIC1,BSEP and MDR3 in a large cohort of patients with cholestasis revealed a high numb er of different genetic variants[J].J Hepatol,2017,67(6):1253-1264.
[13] Mao Q,Unadkat JD.Role of the breast cancer resistance protein (bcrp/abcg2) in drug transportan update[J].AAPS J,2015,17(1):65-82.
[14] Ding R,Shi J,Pabon K,et al.Xanthines Down-regulate the drug transporter ABCG2 and reverse multidrug resistance[J].Molecular Pharmacology,2012,81(3):328-337.
[15] Westover D,Li F.New trends for overcoming ABCG2/BCRP-mediated resistance to cancer therapies[J].J Exp Clin Cancer Res,2015,34:159.
[16] Thakkar N,Slizgi JR,Brouwer KLR.Effect of liver disease on hepatic transporter expression and function[J].J Pharm Sci,2017,106(9):2282-2294.
[17] Sticova E,Lodererova A,van de Steeg E,et al.Down-regulation of OATP1B proteins correlates with hyper-bilirubinemia in advanced cholestasis[J].Int J Clin Exp Pathol,2015,8(5):5252-5262.
[18] Nicolaou M,Andress EJ,Zolnerciks JK,et al.Canalicular ABC transporters and liver disease[J].J Pathology,2012,226(2):300-315.
[19] Deferm N,De Vocht T,Qi B,et al.Current insights in the complexities underlying drug-induced cholestasis[J].Crit Rev Toxicol,2019,49(6):520-548.
[20] Garzel B,Zhang L,Huang SM,et al.A change in bile flow:Looking beyond transporter inhibition in the development of drug-induced cholestasis[J].Curr Drug Metab,2019,20(8):621-632.
[21] Kong B,Sun R,Pan Y,et al.Fibroblast growth factor 15 overexpressed in both liver and intestine suppresses bile acid biosynthesis and promotes liver regeneration[J].Hepatology,2016,63(1 supp):76A.
[22] Diao L,Li N,Brayman TG,et al.Regulation of MRP2/ABCC2 and BSEP/ABCB11 expression in sandwich cultured human and rat hepatocytes exposed to inflammatory cytokines TNF-alpha,IL-6,and IL-1 beta[J].J Biol Chem,2010,285(41):31185-31192.
[23] Merrell MD,Cherrington NJ.Drug metabolism alterations in nonalcoholic fatty liver disease[J].Drug Metab Rev,2011,43(3):317-334.
[24] Canet MJ,Hardwick RN,Lake AD,et al.Modeling human nonalcoholic steatohepatitis-associated changes in drug transporter expression using experimental rodent models[J].Drug Metab Dispos,2014,42(4):586-595.
[25] Lickteig AJ,Fisher CD,Augustine LM,et al.Efflux transporter expression and acetaminophen metabolite excretion are altered in rodent models of nonalcoholic fatty liver disease[J].Drug Metabo Dispos,2007,35(10):1970-1978.
[26] Cobbina E,Akhlaghi F.Non-alcoholic fatty liver disease (NAFLD)-pathogenesis,classification,and effect on drug metabolizing enzymes and transporters[J].Drug Metab Rev,2017,49(2):197-211.
[27] Ni Y,Lempp FA,Mehrle S,et al.Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes[J].Gastroenterology,2014,146(4):1070-1083.
[28] Thomas E,Liang TJ.Experimental models of hepatitis B and C-new insights and progress[J].Nat Rev Gastroenterol Hepatol,2016,13(6):362-374.
[29] Tsukuda S,Watashi K,Hojima T,et al.A new class of hepatitis B and D Virus entry inhibitors,proanthocyanidin and its analogs,that directly act on the viral large surface proteins[J].Hepatology,2017,65(4):1104-1116.
[30] Ogasawara K,Terada T,Katsura T,et al.Hepatitis C virus-related cirrhosis is a major determinant of the expression levels of hepatic drug t ransporters[J].Drug Metab Pharmacokinet,2010,25(2):190-199.
[31] Wang H,Wu G,Park HJ,et al.Protective effect of Phellinus linteus polysaccharide extracts against thioacetamide-induced liver fibrosis in rats:A proteomics analysis[J].Chin Med,2012,7(1):23.
[32] Zhou T,Kyritsi K,Wu N,et al.Knockdown of vimentin reduces mesenchymal phenotype of cholangiocytes in the Mdr2-/- mouse model of p rimary sclerosing cholangitis (PSC)[J].EBioMedicine,2019,48:130-142.
[33] Raafat N,Aal SMA,Abdo FK,et al.Mesenchymal stem cells:In vivo therapeutic application ameliorates carbon tetrachloride induced liver fibrosis in rats[J].Int J Biochem Cell Biol,2015,68:109-118.
[34] Geier A,Kim SK,Gerloff T,et al.Hepatobiliary organic anion transporters are differentially regulated in acute toxic liver injury induced by carbon tetrachloride[J].J Hepatol,2002,37(2):198-205.
[35] Januchowski R,Zawierucha P,Andrzejewska M,et al.Microarray-based detection and expression analysis of ABC and SLC transporters in drug-resistant ovarian cancer cell lines[J].Biomed Pharmacother,2013,67(3):240-245.
[36] Yang X,Iyer AK,Singh A,et al.Cluster of differentiation 44 targeted hyaluronic acid based nanoparticles for MDR1 siRNA delivery to overcome drug resistance in ovarian cancer[J].Pharm Res,2015,32(6):2097-2109.
[37] Tomonari T,Takeishi S,Taniguchi T,et al.MRP3 as a novel resistance factor for sorafenib in hepatocellular carcinoma[J].Oncotarget,2016,7(6):7207-7215.
[38] Halilbasic E,Claudel T,Trauner M.Bile acid transporters and regulatory nuclear receptors in the liver and beyond[J].J Hepatol,2013,58(1):155-168.
[39] Xiang D,Yang J,Liu Y,et al.Calculus bovis sativus improves bile acid homeostasis via farnesoid X receptor-mediated signaling in rats with estrogen-induced cholestasis[J].Front Pharmacol,2019,10:321-328.
[40] Bai X,Chen Y,Hou X,et al.Emerging role of NRF2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters[J].Drug Metab Rev,2016,48(4):541-567.
[41] Ananthanarayanan M,Balasubramanian N,Makishima M,et al.Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor[J].J Biol Chem,2001,276(31):28857-28865.
[42] Yang Y,Liu L,Zhang X,et al.Tanshinone IIA prevents rifampicin-induced liver injury by regulating BSEP/NTCP expression via epigenetic activation of NRF2[J].Liver Int,2020,40(1):141-145.
[43] Suzuki MM,Bird A.DNA methylation landscapes:Provocative insights from epigenomics[J].Nat Rev Genet,2008,9(6):465-476.
[44] Ponnaluri VKC,Ehrlich KC,Zhang G,et al.Association of 5-hydroxymethylation and 5-methylation of DNA cytosine with tissue-specific gene expression[J].Epigenetics,2017,12(2):123-138.
[45] Yamashita K,Hosoda K,Nishizawa N,et al.Epigenetic biomarkers of promoter DNA methylation in the new era of cancer treatment[J].Cancer Sci,2018,109(12):3695-3706.
[46] Schaeffeler E,Hellerbrand C,Nies AT,et al.DNA methylation is associated with downregulation of the organic cation transporter OCT1(SLC22A1) in human hepatocellular carcinoma[J].Genome Med,2011,3(12):82.
[47] Tessarz P,Kouzarides T.Histone core modifications regulating nucleosome structure and dynamics[J].Nat Rev Mol Cell Biol,2014,15(11):703-708.
[48] Bhaumik SR,Smith E,Shilatifard A.Covalent modifications of histones during development and disease pathogenesis[J].Nat Struct Mol Biol,2007,14(11):1008-1016.
[49] Zhang B,Zheng H,Huang B,et al.Allelic reprogramming of the histone modification H3K4me3 in early mammalian development[J].Nature,2016,537(7621):553-560.
[50] Hairong H.Histone methyltransferase MLL1 regulates MDR1 transcription and chemoresistance[J].Cancer Res,2010,21(70):332-341.
[51] Jeltsch A,Broche J,ashtrykov P.Molecular processes connecting DNA methylation patterns with DNA methyltransferases and histone modifications in mammalian genomes[J].Genes,2018,9(11):2651-2659.
[52] Estecio MRH,Issa J-PJ.Dissecting DNA hypermethylation in cancer[J].Febs Lett,2011,585(13):2078-2086.
[53] Imai S,Kikuchi R,Kusuhara H,et al.Analysis of DNA methylation and histone modification profiles of liver-specific transporters[J].Mol Pharmacol,2009,75(3):568-576.
[54] Thakur A,Wong JCH,Wang EY,et al.Hepatocyte nuclear factor 4-alpha is essential for the active epigenetic state at enhancers in mouse liver[J].Hepatology,2019,70(4):1360-1376.
[55] Imai S,Kikuchi R,Kusuhara H,et al.Analysis of DNA methylation and histone modification profiles of liver-specific transporters[J].Mol Pharmacol,2008,75(3):568-576.
[56] Liu Y,Zheng X,Yu Q,et al.Epigenetic activation of the drug transporter OCT2 sensitizes renal cell carcinoma to oxaliplatin[J].Sci Transl Med,2016,8(348):348ra97.
[57] Gebhard C,Benner C,Ehrich M,et al.General transcription factor binding at CpG islands in normal cells correlates with resistance to de novo dna methylation in cancer cells[J].Cancer Res,2010,70(4):1398-1407.
[58] Kim YC,Fang S,Byun S,et al.Farnesoid X receptor-induced lysine-specific histone demethylase reduces hepatic bile acid levels and protects the liver against bile acid toxicity[J].Hepatology,2015,62(1):220-231.
[59] Huang Q,Ma C,Chen L,et al.Mechanistic Insights into the interaction between transcription factors and epigenetic modifications and the contribution to the development of obesity[J].Front Endocrinol(Lansanne),2018,9:370.
[60] Volpe DA.Transporter assays as useful in vitro tools in drug discoveryand development[J].Expert Opin Drug Discov,2016,11(1):91-103.
【关闭】