论文速览

论文速览

当前位置: 首页 > 论文速览 > 正文

基于FCM和SSA-ELM的超短期风功率预测

ZHANG Hongtao,HAN Jing,TAN Lian,LIU Peng,ZHANG Liang

作者:张红涛(华北水利水电大学 电力学院);韩 婧(华北水利水电大学 电力学院);谭 联(华北水利水电大学 电力学院);刘鹏(华北水利水电大学 电力学院);张亮(华北水利水电大学 电力学院)

Author:();();();刘鹏();张亮()

收稿日期:2020-01-15          年卷(期)页码:2020,52(6):-

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:风功率预测;相似日;樽海鞘群算法 ;极限学习机

Key words:Wind power prediction; similar day; salp swarm algorithms; extreme learning machine

基金项目:国家自然科学基金:31671580、U1504622

中文摘要

针对风电输出功率波动大、随机性强等特征引起风功率难以预测的问题,提出了基于模糊C均值聚类(Fuzzy C-Means,FCM)选取相似日和樽海鞘群算法优化极限学习机(SSA-ELM)的风电场超短期风功率预测模型。首先,采用FCM数据聚类方法,筛选出与预测日相关性较大的历史相似日,将其风速、温度、风向、气压等影响风功率的主要因素组成多输入样本集合;其次,通过训练集在训练过程中确定的网络参数,利用樽海鞘群算法在迭代过程中的充分探索和开发,优化极限学习机的输入权值矩阵及隐含层偏差值,建立樽海鞘群算法优化极限学习机的超短期风功率预测模型;最后,根据超短期风电并网的相关规定,针对河南省某风电场的实际数据,分别从基于相似日超短期预测、具有代表性的四季预测和滚动误差三方面进行仿真实验,与传统极限学习机(ELM)和BP神经网络模型进行对比分析,结果表明本文提出的模型收敛速度快,预测精度较高。证明了基于FCM和SSA-ELM的超短期风功率预测模型具有良好的追踪性和泛化性。

英文摘要

In order to solve the problem that wind power is hard to predict due to its characteristics such as large fluctuation and strong randomness,, a ultra-short-term wind power prediction model for wind farms is proposed based on Fuzzy C-Means (FCM), which selects similar daily and Salp Swarm algorithm to optimize the Extreme Learning Machine (SSA-ELM). Firstly, FCM data clustering method was used to select similar days with higher correlation with the predicted days, and formed the multi-input sample set the multi-input sample set is composed of historical wind speed, temperature, wind direction and other climatic factors that are highly correlated with wind power. Secondly, network parameters are determined in the training process through the training set, and the input weight matrix and hidden layer deviation of the extremely learning machine are optimized to improve the adaptability and accuracy of the prediction model by fully exploring and developing the salp swarm algorithm in the iterative process. Finally, according to the ultra-short-term wind power interconnection related provisions, using the actual data of a wind farm in Henan province from ultra short-term prediction based on similar days, three aspects of the four seasons and rolling prediction error of the representative simulation experiment, and the Extreme Learning Machine (ELM) and BP neural network model were analyzed, the results show that the proposed model convergence speed and higher prediction precision. It is proved that the ultra-short term wind power prediction model based on FCM and SSA-ELM has good tracking and generalization ability.

上一条:新型培养基促进牙乳头细胞成骨分化及其在牙周骨组织再生中的应用

下一条:蒂巴因关键中间体的合成

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065