人工智能在锥形束计算机断层扫描影像中识别慢性根尖周炎根尖区病变的应用
Use and performance of artificial intelligence applications in the diagnosis of chronic apical periodontitis based on cone beam computed tomography imaging
作者:钱军, 马芮, 曲妍, 邓少纯, 段瑶, 左飞飞, 王亚杰, 毋育伟
Author:Qian Jun, Ma Rui, Qu Yan, Deng Shaochun, Duan Yao, Zuo Feifei, Wang Yajie, Wu Yuwei
收稿日期:2022-04-13 年卷(期)页码:2022,40(5):576-576-581
期刊名称:华西口腔医学杂志
Journal Name:West China Journal of Stomatology
关键字:人工智能,锥形束计算机断层扫描,深度学习,慢性根尖周炎,
Key words:artificial intelligence,cone-beam computed tomography,deep learning,chronic apical periodontitis,
基金项目:国家自然科学青年基金(81300851);首都健康保障培育研究(Z181100001618018)
中文摘要
目的 探讨基于卷积神经网络算法的人工智能(AI)计算机辅助诊断系统在锥形束CT(CBCT)影像上识别慢性根尖周炎根尖区病变的应用。 方法 收集北京大学口腔医院第二门诊部2017年1月—2021年12月累及单牙根的慢性根尖周炎的CBCT影像,总计49例患者55个牙位。由5位中级职称的临床医生通过Materialize Mimics Medical软件对慢性根尖周炎病变区域识别并进行手动逐层分割,然后通过AI 3D U-Net网络对病损特征进行深度学习,网络分割结果与手动分割数据的一致性,本研究通过交联比(IOU)、Dice系数、像素精确度(PA)在测试集上进行评价。 结果 神经网络在测试集的IOU为92.18%,Dice系数为95.93%,PA为99.27%。 结论 AI和临床医师的慢性根尖周炎病变检出和分割一致性较高,基于本研究深度学习方法的AI系统为下一步检测CBCT图像中的慢性根尖周炎奠定了基础。
英文摘要
ObjectiveThis study aims to investigate the diagnostic application of an artificial intelligence (AI) computer-aided diagnostic system based on a convolutional neural network algorithm in detecting chronic apical periodontitis in cone beam computed tomography (CBCT) images.MethodsCBCT raw data of 55 single root chronic apical pe-riodontitis taken in 2nd Dental Center of Peking University School and Hospital from 49 patients from January 2017 to December 2021 were collected, and the chronic apical periodontitis areas were identified by experienced clinicians ma-nually and segmented layer by layer in Materialise Mimics Medical Software. Deep learning of lesion characterization was conducted via AI 3D U-Net, and the network segmentation results were compared manually with the test sets in terms of intersection over union (IOU), Dice coefficient, and pixel accuracy (PA).ResultsIn our deep learning algorithm, the IOU for all actual true lesions in test set samples was 92.18%, and the Dice coefficient and the PA index were 95.93% and 99.27%, respectively. Lesion segmentation and volume measurements performed by humans and AI systems showed excellent agreement.ConclusionAI systems based on deep learning methods can be applied for detecting chronic apical periodontitis on CBCT images in clinical applications.
上一条:自体牙本质用于牙槽嵴增量的Meta分析
【关闭】