期刊导航

论文摘要

考虑前期影响雨量的NLPM-AMN模型

A Nonlinear Perturbation Model Based on Artificial Neural Network and Considering the Antecedent Precipitation Index

作者:庞博(武汉大学 水资源与水电工程科学国家重点实验室,湖北 武汉 430072);郭生练(武汉大学 水资源与水电工程科学国家重点实验室,湖北 武汉 430072);林凯荣(武汉大学 水资源与水电工程科学国家重点实验室,湖北 武汉 430072)

Author:(State Key Lab. of Water Resources and Hydropower Eng. Sci., Wuhan Univ., Wuhan 430072, China);(State Key Lab. of Water Resources and Hydropower Eng. Sci., Wuhan Univ., Wuhan 430072, China);(State Key Lab. of Water Resources and Hydropower Eng. Sci., Wuhan Univ., Wuhan 430072, China)

收稿日期:2006-01-16          年卷(期)页码:2007,39(1):18-22

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:水文预报;线性扰动模型;人工神经网络; 前期影响雨量;NLPM-AMN模型

Key words:flood forecasting; linear perturbation model; artificial neural network; antecedent precipitation index; NLPM-AMN model

基金项目:教育部重点科学技术支持项目资助(104204)

中文摘要

建立了一种考虑前期影响雨量和采用人工神经网络的非线性扰动模型。模型结构与NLPM-API模型相似, 不同之处在于采用人工神经网络模拟输入扰动项与输出扰动项之间的相互关系。 采用牧马河和鲇鱼山水库流域的日降雨径流资料对模型进行了率定和校核。 结果表明, 所建模型与线性扰动模型、NLPM-AMN模型和NLPM-API模型相比, 两个流域在率定期的模型效率系数增长幅度分别为10.84%, 1.54%, 10.6%和21.59%, 0.67%, 10.11%;在检验期的模型效率系数增长幅度分别为5.56%, 0.

英文摘要

A nonlinear perturbation model (NLPM) based on Artificial Neural Network (ANN) and considering the antecedent precipitation index (API) is proposed and developed. The model structure is similar to the NLPM-API model. The difference is that the ANN is adopted to simulate the relationship between the input perturbing terms and the output perturbing terms. The daily rainfall-runoff data from the Mumahe and Nianyushan reservoir basins is selected to test the model. The proposed model is compared with the LPM, NLPM-AMN and NLPM-API models, the model efficiencies in these two basins are increased 10.84%, 1.54%, 10.6% and 21.59%, 0.67%,10.11% during calibration period; 5.56%, 0.97%, 4.41% and 11.86%, 1.76%, 7.97% during verification period, respectively. All other assessment indexes are also superior to other models.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065