期刊导航

论文摘要

基因表达式编程中动态适应的远缘繁殖策略

Outbreeding Strategy with Dynamic Fitness in Gene Expression Programming

作者:姜玥(四川大学 计算机学院,四川 成都 610064);唐常杰(四川大学 计算机学院,四川 成都 610064);郑明秀(四川大学 计算机学院,四川 成都 610064)

Author:(School of Computer Sci., Sichuan Univ., Chengdu 610064,China);(School of Computer Sci., Sichuan Univ., Chengdu 610064,China);(School of Computer Sci., Sichuan Univ., Chengdu 610064,China)

收稿日期:2006-05-09          年卷(期)页码:2007,39(2):121-126

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:基因表达式编程;多样性;适应度函数;强变异

Key words:Gene Expression Programming(GEP); diversity; fitness function; strong mutation

基金项目:国家自然科学基金资助项目(60473071);高等学校博士学科点专项科研基金SRFDP资助项目(2002061007)

中文摘要

传统基因表达式编程采用静态适应度函数,影响了后期进化速度和整体质量。提出了远缘繁殖策略和动态适应度函数策略,远亲繁殖并及时变换评估个体的标准,增加多样性并有利于选择优质个体;实验表明,将远缘繁殖和动态适应度函数策略结合,有效地改善了传统GEP的性能,进化代数平均下降达10%,平均最高适应度值提高7%~14%,最高适应度提高达7%以上,进化的成功率提高达30%以上。

英文摘要

Traditional Gene Expression Programming(GEP) uses static fitness function. It decreases evolution speed and quality. To solve the problem, outbreeding strategy and dynamic fitness function strategy: outbreed and timely change standard of evaluating individuals were proposed to increase diversity and select excellent individuals; The experiments showed that the performance of traditional GEP is effectively improved by the combination of OBS and DFFS. The average fitness for the best individual is increased by 7%~14%, the maximal fitness is increased by over 7%, and the success rate is increased by over 30%.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065