期刊导航

论文摘要

基于聚类分析的人工神经网络洪水预报模型研究

Classification-based Flood Forecasting Model Using Artificial Neural Networks

作者:尹雄锐(武汉大学 水资源与水电工程科学国家重点实验室,湖北 武汉 430072);张翔(武汉大学 水资源与水电工程科学国家重点实验室,湖北 武汉 430072);夏军(武汉大学 水资源与水电工程科学国家重点实验室,湖北 武汉 430072)

Author:(State Key Lab. of Water Resources and Hydropower Eng. Sci., Wuhan Univ., Wuhan 430072, China);(State Key Lab. of Water Resources and Hydropower Eng. Sci., Wuhan Univ., Wuhan 430072, China);(State Key Lab. of Water Resources and Hydropower Eng. Sci., Wuhan Univ., Wuhan 430072, China)

收稿日期:2006-09-25          年卷(期)页码:2007,39(3):34-40

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:模糊C均值;自组织映射网络;洪水预报;聚类分析;人工神经网络

Key words:Fuzzy C Means(FCM); Self-Organizing Feature Map(SOM); flood forecasting; clustering analysis; artificial neural networks

基金项目:国家自然科学基金资助项目(50579053,50239050);湖北省自然科学基金资助项目(2005ABA288)

中文摘要

应用模糊C均值(FCM)和自组织映射网络(SOM)两种方法将洪水流量过程线进行分解,并聚成不同的类别,结合多层前馈神经网络(MFN)建立了两个综合神经网络模型(FCMMFN和SOMMFN),进行洪水预报。在王家厂水库流域洪水预报的应用结果表明,两种聚类方法能够将流量过程分解为具有不同内在规律的若干过程,两种综合神经网络模型预报精度均优于单一的多层前馈网络模型,而且FCMMFN的精度高于SOMMFN。

英文摘要

Fuzzy C Means(FCM) clustering method and Self-Organizing Feature Map(SOM) clustering method were both employed to decomposed the flow hydrograph to several segments, and the situation of rain and runoff was analyzed in each segment, then two hybrid artificial neural networks (FCMMFN & SOMMFN), based on Fuzzy C Means clustering method and Self-Organizing Feature Map clustering method separately, were applied to simulate the rainfall runoff relationship. The case study in Wangjiachang Reservoir indicated that two clustering methods have the ability to decomposed the flow hydrograph to several segments in which the under-lying mechanisms of streamflow generation appear different. Besides, the two classification based artificial neural networks are both superior to the single multi-layer feedforward network, furthermore, the performance of FCMMFN is better than the one of SOMMFN.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065