双铰抛物线弹性拱的混沌行为
The Chaotic Behavior of Parabolic Elastic Arch with Two Hinge Supports
作者:巫祖烈(重庆交通大学 桥梁结构工程交通行业重点实验室, 重庆 400074);李世亚(重庆交通大学 桥梁结构工程交通行业重点实验室, 重庆 400074);杜长城(西南交通大学 应用力学与工程系, 四川 成都 610031)
Author:(Key Lab. of BridgeStructure Eng.of Ministry of Communications,Chongqing Jiaotong Univ., Chongqing 400074, Chin);(Key Lab. of BridgeStructure Eng.of Ministry of Communications,Chongqing Jiaotong Univ., Chongqing 400074, Chin);(Dept. of Applied Mechanics and Eng., Southwest Jiaotong Univ., Chengdu 610031, China)
收稿日期:2006-10-31 年卷(期)页码:2007,39(4):31-34
期刊名称:工程科学与技术
Journal Name:Advanced Engineering Sciences
关键字:弹性拱;Melnikov函数;混沌;微分动力系统
Key words:elastic arch; Melnikov function;chaos;differential dynamic system
基金项目:四川省应用基础资助项目(05JY029-006-3);重庆交通大学桥梁结构工程交通行业重点实验室开放基金资助项目(2006-1)
中文摘要
要设计出具有好的非线性动力学特性的拱结构,需要了解拱在外激励下的长期非线性动力学行为,对两铰抛物线弹性拱在横向周期荷载下的混沌运动行为进行了研究。基于变形体的几何方程及拱的单元平衡方程建立拱的非线性动力学模型,然后利用Galerkin原理得到控制拱横向振动的二阶三次非线性微分动力系统,并由此得无扰动系统的不动点与同宿轨道;使用Melnikov方法得到了拱混沌振动的临界条件;最后通过数值仿真得到该微分动力系统Lyapunov指数谱、Lyapunov维数、平面相轨线、Poincare映射等混沌特性,并以此判定
英文摘要
In order to design an arch structure with good nonlinear dynamic characteristics, the nonlinear dynamic behaviors under a long time external force have to be investigated. The chaotic behaviors of the parabolic elastic arch with two hinge supports subjected to a transverse distributed varying periodic excitation are investigated in this paper. Based on the geometric equation of deformable body and the equilibrium equations of an arch element, the nonlinear dynamic model which dominates the transverse vibration of the elastic arch is established first,and then the nonlinear differential dynamic system is obtained by using Galerkin’s method, thus the fixed points and the homoclinic orbits are found out. The critical condition of chaotic vibration of the elastic arch is obtained through the Melnikov's method. Finally the dynamic characteristics (such as Lyapunov exponents and Lyapunov dimension and the phase trajectories and also the Poincare map etc.) which can be used to explain the dynamic behaviors of the differential dynamic system of the elastic arch are calculated by using numerical simulation for different parameters. It is found that the motion of the parabolic elastic arch with two hinge supports subjected to a transverse periodic excitation may be stationary or chaotic motion. The stationary motion occurs if the amplitude of the transverse periodic excitation is small, but the chaotic motion occurs if the amplitude is large.
【关闭】