期刊导航

论文摘要

一种基于频繁k元一阶元规则的多维离散数据挖掘模型

Research on Frequent k-ary Meta Rule in First Order for Multi-dimensional Discrete Data Mining

作者:曾涛(四川大学 计算机学院, 四川 成都 610065);唐常杰(四川大学 计算机学院, 四川 成都 610065);向勇(四川大学 计算机学院, 四川 成都 610065)

Author:(School of Computer Sci., Sichuan Univ., Chengdu 610065, China);(School of Computer Sci., Sichuan Univ., Chengdu 610065, China);(School of Computer Sci., Sichuan Univ., Chengdu 610065, China)

收稿日期:2006-06-27          年卷(期)页码:2007,39(5):121-126

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:数据挖掘; 元规则; k元一阶元规则; 多维; 离散数据

Key words:data mining; meta-rule; k-ary meta rule in first order; multi-dimensional;discrete data

基金项目:国家自然科学基金项目(60473071; 90409007); 四川省教育厅资助科研项目(2006B067)

中文摘要

为实现对多维离散数据的挖掘,提出了包含“与”、“或”、“非”逻辑的元规则概念模型,定义了元规则实例及相应的支持度和置信度概念。在此基础上提出了新的更精炼且更有启发意义的k元一阶元规则概念模型,定义了频繁度概念,证明了k元一阶元规则的空间性质定理包括上下界计算公式。文中的元规则具有更高的抽象层次,更小的解空间,能够描述元数据间的关系以及强规则实例的分布的情况。给出了k

英文摘要

To process multi-dimensional discrete data, formal concept of meta rule including connective “AND” “OR” or “NOT” was proposed. Support degree and confidence degree of meta-rule instance were defined. Solution space of meta rule problem was analyzed. Furthermore, formal concept of frequent k-ary Meta Rule in First Order (k-MR) was introduced. The concept of frequent degree and the bound equation of solution space of k-MR were presented. The k-MR, with smaller solution space, is more abstract than its base rule. It can represent distribution of strong meta rule instance and relationship between meta data. Space distribution of k-MR was also studied and verified in experimental evaluation where k

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065