期刊导航

论文摘要

基于MTC结构的支持向量机并行训练算法 贾华丁1, 2,游志胜1,王磊2

A Parallel Training Algorithm of Support Vector MachinesBased on the MTC Architecture

作者:贾华丁(四川大学 计算机学院 ,四川 成都 610064);游志胜(四川大学 计算机学院 ,四川 成都 610064);王磊(西南财经大学 经济信息工程学院,四川 成都 610074)

Author:(School of Computer Sci., Sichuan Univ., Chengdu 610064,China);(School of Computer Sci., Sichuan Univ., Chengdu 610064,China);(School of Economics Info. Eng., Southwest Univ. of Finance and Economics,Chengdu 610074,China)

收稿日期:2007-04-24          年卷(期)页码:2007,39(6):123-128

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:支持向量机;训练算法;并行学习结构

Key words:support vector machines;training algorithm;parallel learning architecture

基金项目:国家自然科学基金资助项目(69732010)

中文摘要

摘要:为加快支持向量机的训练速度,提出一种新型的“多重三叉级联(MTC)”学习结构,具有反馈速度快、计算节点利用率高、反馈的支持向量多等优点。基于该结构设计了支持向量机的并行训练算法,并严格证明了新算法能够收敛到支持向量机的最优解。数值实验结果表明,新算法具有非常高的加速比和并行效率,需要的训练时间显著地少于Graf等提出的Cascade SVM算法。

英文摘要

For accelerating the training speed of support vector machines (SVM), a novel “multi-trifurcate cascading (MTC)” architecture,which held the advantages of fast feedback, high utilization rate of nodes, and more feeding support vectors,was proposed. A parallel algorithm for training SVM was designed based on the MTC architecture, and it was proven to converge to the optimal solution strictly. The experimental results showed that the proposed algorithm obtained very high speedup and efficiency, and needed significantly less training time than the Cascade SVM algorithm.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065