基于模糊自适应和优化阻抗的双机器人力/位主从协同控制方法
Force/Position Master-slave Cooperative Control for Dual Robots Based on Fuzzy and Optimized Bacterial Foraging Algorithms
作者:曹学鹏(长安大学 工程机械学院,陕西 西安 710064);包翔宇(长安大学 工程机械学院,陕西 西安 710064;广州中国科学院先进技术研究所,广东 广州 511458);张弓(广州中国科学院先进技术研究所,广东 广州 511458);侯至丞(广州中国科学院先进技术研究所,广东 广州 511458);徐征(广州中国科学院先进技术研究所,广东 广州 511458)
Author:CAO Xuepeng(School of Mechanical Eng., Chang’an Univ., Xi’an 710064, China);BAO Xiangyu(School of Mechanical Eng., Chang’an Univ., Xi’an 710064, China;Guangzhou Inst. of Advanced Technol., Chinese Academy of Sciences, Guangzhou 511458, China);ZHANG Gong(Guangzhou Inst. of Advanced Technol., Chinese Academy of Sciences, Guangzhou 511458, China);HOU Zhicheng(Guangzhou Inst. of Advanced Technol., Chinese Academy of Sciences, Guangzhou 511458, China);XU Zheng(Guangzhou Inst. of Advanced Technol., Chinese Academy of Sciences, Guangzhou 511458, China)
收稿日期:2019-07-22 年卷(期)页码:2020,52(4):226-234
期刊名称:工程科学与技术
Journal Name:Advanced Engineering Sciences
关键字:双机器人;协同搬运;位置控制;阻尼控制;模糊自适应;?细菌觅食算法(BFA)
Key words:dual robots;cooperative handling;position control;damping control;fuzzy adaptive;bacterial foraging algorithm(BFA)
基金项目:国家重点研发计划项目(2017YFE0123900;2018YFA0902903);先进节能教育部工程中心开放课题(SWEDT-KF201902);广东省科技专项(2014ZT05G132;2018A030310046);广州市科技专项(201704030091;202002030320);深圳市海外高层次人才资金项目(KQTD2015033117354154);东莞市重大专项(2017215102008)
中文摘要
多机器人协同作业广泛用于多机协同搬运、冲压、焊接等领域,具有更高的精度,更灵活的工况执行能力。协同系统的插补算法与力/位控制性能共同决定了协同作业的轨迹平滑性和稳定性,也直接影响着系统的承载性能与作业质量。作者针对双机器人协同搬运过程中的力/位控制技术展开了研究。首先,分析了双机器人协同搬运工况的夹持特征和受力状态,建立了协同搬运系统的理想数学模型。接着,依据主从机器人2阶阻尼系统的数学模型,采用双机器人主从协同控制模式,分别设计力/位控制策略;提出主机器人采用基于理想位置的优化模糊自整定位置控制,从机器人采用基于主机器人位置偏差的优化细菌觅食算法的阻尼控制,进行控制模块的设计工作。然后,在MATLAB中编译了细菌觅食算法主体及其代价函数,在Simulink中搭建控制系统。最后,对整个控制器模块进行联合仿真,仿真结果如下:主机器人的最大位置误差缩小到1.53 mm,从机器人的最大力误差缩小到0.038 N。从机器人追踪主机器人的位置误差控制在0.18 mm内,且从机器人可在0.2 s内快速修正主从速度偏差。仿真结果表明:相比常规PD控制,本文所述控制方法可减少约40%的最大追踪误差,且有效消除了力追踪过程中的过零振荡现象,提高了系统的实时追踪动态性能。
英文摘要
Multi-robot cooperation is widely used in cooperative handling, stamping, welding and other fields, with higher precision and more flexibility. The interpolation algorithm and the force/position control performance determine the smoothness of the trajectories and the stability of the cooperative operation, and also directly affect the bearing capacity and the operation quality. In this paper, the force/position control technology in the process of two robots cooperative handling was studied. First, the clamping characteristics and stress state of two robots cooperative handling were analyzed, and the ideal mathematical model of cooperative handling system was established. Next, according to the mathematical model of the second-order damping system of the master-slave robot, the master-slave cooperative control mode was adopted to design the force/position control strategies respectively. The optimized fuzzy self-tuning position control based on the ideal position was presented for the master robot, and the damping control with the optimized bacterial foraging algorithm based on the force optimization of position deviation of the master robot was presented for the slave robot, and the design of the controller was carried out. Then, the main body of the algorithm and its cost function were programed in MATLAB, and the control system was established in Simulink. Finally, the whole controller was simulated. The simulation results were as follows. The maximum position error of the master was 1.53 mm, and the maximum force error of the slave was 0.038 N. The position error of tracking down between the slave and the master was within 0.18 mm, and the slave could quickly correct the master-slave speed deviation within 0.2 s. The simulation results showed that compared with the conventional PD control method, the proposed controller could reduce the maximum tracking error by 40% and effectively eliminate the zero-crossing oscillations of the force tracking. This method could significantly improve the dynamic performance of the system.
上一条:新型微耕机磁流变弹性体隔振系统控制策略仿真
【关闭】