In order to study the influence of axial compression ratio on corrugated steel plate-concrete composite shear walls(SPCSW), ABAQUS finite element software with different axial compression ratio was used for the nonlinear analysis of vertical corrugated steel plate-concrete composite shear wall (SPCSW-2) and horizontal corrugated steel plate-concrete composite shear wall (SPCSW-3) and the analysis results were verified by experiments. The results of finite element analysis show that when the axial compression ratio is in the range of 0.15 to 0.45 and increases gradually, the bearing capacity and energy dissipation capacity of SPCSW-2 were increased, and its ductility and deformation capacity were weakened. When the axial compression ratio exceeds 0.6, The seismic performance of shear wall is poor. When the axial compression ratio was in the range of 0.15 to 0.30 and increases gradually, the bearing capacity of SPCSW-3 increases, and its ductile and deformation capacity weakens, but it has no significant effect on the energy dissipation capacity. When the axial compression ratio exceeds 0.45, the seismic performance of shear wall is poor. When the axial compression ratio is more than 0.6, the displacement angle in the limit state is lower than the limit requirement of displacement angle. When the axial compression ratio is in the range of 0.15 to 0.30 and the axial compression ratio of SPCSW-2 and SPCSW-3 is the same, the former shows better seismic performance. In order to ensure the reliability of the finite element analysis, a quasi-static test was carried out on the two shear walls. The experimental results showed that the finite element analysis results were in good agreement with the experimental results, so the results of finite element analysis can provide a reference for the follow-up practical engineering.