期刊导航

论文摘要

基于改进AP聚类与优化GRNN的非侵入式负荷分解研究

Research on Non-intrusive Load Decomposition Based on Improved AP Clustering and Optimized GRNN

作者:汪繁荣(湖北工业大学 太阳能高效利用及储能运行控制湖北省重点实验室,湖北 武汉 430068;无锡风繁伟业科技有限公司,江苏 无锡 214171);向堃(湖北工业大学 太阳能高效利用及储能运行控制湖北省重点实验室,湖北 武汉 430068);刘辉(湖北工业大学 太阳能高效利用及储能运行控制湖北省重点实验室,湖北 武汉 430068)

Author:WANG Fanrong(Hubei Key Lab. for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei Univ. of Technol., Wuhan 430068, China;Wuxi Fengfan Weiye Technol. Co., Ltd., Wuxi 214171, China);XIANG Kun(Hubei Key Lab. for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei Univ. of Technol., Wuhan 430068, China);LIU Hui(Hubei Key Lab. for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei Univ. of Technol., Wuhan 430068, China)

收稿日期:2019-12-19          年卷(期)页码:2020,52(4):56-65

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:非侵入式负荷分解与监测;半监督近邻传播聚类;果蝇优化算法;广义回归神经网络

Key words:non-intrusive load decomposition and monitoring;semi-supervised affinity propagation clustering;fruit fly optimization algorithm;generalized regression neural network

基金项目:国家自然科学基金项目(41601394)

中文摘要

泛在电力物联网的提出推动了智慧用电、负荷监测等技术的大力发展,为解决传统非侵入式负荷监测与分解方法耗时长、辨识精度低等问题,提出了一种通过半监督学习聚类数据建立特征集并结合果蝇优化广义回归神经网络模型的负荷分解方法。首先,该方法利用输入的设备有功功率和电流数据采取半监督学习优化相似矩阵,以近邻传播聚类算法为基础挖掘出用电设备的运行状态特性及功率信息,再使用数字编码方式将设备运行状态表示为分类标签;然后,输入总有功功率、无功功率以及电流的时间序列数据和对应序列的分类标签矩阵,利用果蝇优化算法的寻优能力求得广义回归神经网络模型的最优Spread值完成模型优化和训练;随后,输入测试时间序列数据,得到分类矩阵即各设备运行状态,并利用设备运行状态对应的功率信息进行总有功功率重构拟合,完成负荷分解。经仿真对比,该方法对所有用电设备运行状态辨识准确率达到86%左右,对单个用电设备运行状态辨识准确率达到96%左右,且耗时较短,显著提高了对负荷特性信息的挖掘能力和分解辨识能力。

英文摘要

The proposal of Electrical Internet of Things (EloT) has promoted the rapid development of smart electricity and load monitoring. In order to solve the problems that traditional non-intrusive load monitoring and decomposition (NILMD) is very time-consuming and has low identification accuracy, the semi-supervised learning (SSL) was used to cluster data and then establish characteristic data set, combined with load decomposition of fruit fly optimization algorithm with generalized regression neural network (FOA-GRNN). First, with the input of active power and current data, the similarity matrix was optimized with the method of semi-supervised learning. The operating state and power information of the electrical equipment were mined based on affinity propagation clustering. Then the operating state was represented as classification label with digital coding. Second, the time series data of the total active power, reactive power and current as well as the classification label matrix of the corresponding series were all input. To complete the model optimization and training, the optimal Spread value of the generalized regression neural network (GRNN) was obtained by using the optimization ability of the fruit fly optimization algorithm (FOA). Subsequently, the test time series data was input to obtain the classification matrix, that is, the operating status of each device, whose corresponding power information was utilized to reconstruct and fit the total active power in a way to complete the load decomposition. Through simulation comparison, the identification accuracy of the operating status of all electrical equipment is about 86% and that of single electrical equipment is about 96%. The proposed method is not time-consuming and significantly improves the mining ability and decomposition identification ability of load characteristics information.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065