白格滑坡裂缝区演变过程及其稳定性分析
Evolution and Stability Analysis of the Cracking Zones at the Site of the Baige Landslides
作者:陈菲(成都大学 建筑与土木工程学院);王塞(四川大学 水力学与山区河流开发保护国家重点实验室 水利水电学院);高云建(四川大学 水力学与山区河流开发保护国家重点实验室 水利水电学院);赵思远(四川大学 水力学与山区河流开发保护国家重点实验室 水利水电学院);李宗亮(中国地质调查局成都地质调查中心);巴仁基(中国地质调查局成都地质调查中心);杨仲康(四川大学 水力学与山区河流开发保护国家重点实验室 水利水电学院);邓建辉(四川大学 水力学与山区河流开发保护国家重点实验室 水利水电学院)
Author:CHEN Fei(School of Architecture and Civil Engineering,Chengdu Univ,Chengdu);WANG Sai(State Key Lab of Hydraulics and Mountain River Eng,College of Water Resource Hydropower,Sichuan University);GAO Yunjian(State Key Lab of Hydraulics and Mountain River Eng,College of Water Resource Hydropower,Sichuan University);ZHAO Siyuan(State Key Lab of Hydraulics and Mountain River Eng,College of Water Resource Hydropower,Sichuan University);LI Zongliang(Chengdu Center of China Geological Survey,Chengdu);BA Renji(Chengdu Center of China Geological Survey,Chengdu);YANG Zhongkang(State Key Lab of Hydraulics and Mountain River Eng,College of Water Resource Hydropower,Sichuan University);DENG Jianhui(State Key Lab of Hydraulics and Mountain River Eng,College of Water Resource Hydropower,Sichuan University)
收稿日期:2020-04-02 年卷(期)页码:2020,52(5):-
期刊名称:工程科学与技术
Journal Name:Advanced Engineering Sciences
关键字:白格滑坡;裂缝区;监测;变形;渗压;稳定性
Key words:Baige landslides; cracking zone; field instrumentation; deformation; seepage; stability
基金项目:国家重点研发计划“青藏高原重大滑坡动力灾变与风险防控关键技术研究”课题六“重大自然灾害监测预警与防范”(2018YFC1505006);第二次青藏高原综合科学考察研究 (2019QZKK0905)。
中文摘要
白格“10.10”滑坡后,其源区边界外残留有方量较大的裂缝区,“11.3”滑坡就是裂缝区部分失稳的结果。“11.3”滑坡后裂缝区范围进一步扩大,存在进一步失稳,进而滑坡堵江的可能性。为此,2019年作者对滑坡区进行了补充地质调查,并开展了裂缝区深部变形与渗压监测等工作。结果表明:(1)滑坡区岩性属于金沙江缝合带的构造混杂岩,以片麻岩为主,夹杂大理岩、碳质板岩,以及超基性和酸性侵入岩。虽然构造活动扰动强烈,边坡整体为逆向坡。蚀变和风化作用对滑坡的孕育演化作用显著。(2)自“11.3”滑坡发生至2019年6月,滑坡裂缝区范围一直在扩展。C1区扩展约500m,到达白格村;C2区越过山脊,至滑坡边界直线距离约130m;C3区范围相对稳定。从宏观变形来看,“11.3”滑坡诱发的裂缝变形最大,此后发展趋缓。(3)C1-1、C2-1和C3区均已形成剪切带,变形深度C1-1区最小(18m),C2-1区最大(67m),C3-1区居中(22.5m)。平均变形速率C1-1区最大,推测大于20mm/天;C3-1区其次,达到3.33mm/天;C2-1区最小,为0.29mm/天。(4)裂缝区不存在稳定的地下水位,变形与降雨无关。(5)裂缝区目前变形均未收敛,均处于蠕变变形状态。后期需要密切关注C1-1和C2-1区,特别是变形特征与局部基岩解体破坏情况。
英文摘要
The Baige “10.10” slide generated large volume of cracking zones outside the boundary of its source area, of which part slips and constitutes the “11.3” slide. The extent of the cracking zones further develops after the “11.3” slide and there still exists the possibility to occur another landslide and to dam the Jinsha River. So in the year 2019, landslide geology was further investigated and field instrumentation, as borehole inclinometer and pore water pressure, was implemented in the cracked zones. Results indicate that: (1) the bedrock in the landslide area is mainly tectonic mélange of gneiss in the Jinsha Suture Belt, intermingled with marble, carbonaceous slate, and intruded ultrabasic and acid rocks. Bedrock alteration and weathering played important roles in the development of the slides. (2) The scope of the cracking zones has been developing from occurrence of the “11.3” slide to June 2019. Zone C1 has extended as far as the Baige Village for ~500m, Zone C2 over the hill ridge for ~130m, while C3 remains basically unchanged. As to the macro-deformation, it is bigger at the occurrence of the “11.3” slide, but slows down ever since. (3) In the cracking zones C-1, C2-1 and C3-1, shear bands at depth are well developed and their depth can reach 18m, 67m and 22.5m and their averaged deformation velocity is 20, 0.29 and 3.33 mm per day respectively for Zones C1-1, C2-1 and C3-1. (4) No stable water table is observed in the cracking zones and the deformation has nothing to do with rainfall. (5) The deformation in the cracking zones is still developing without any sign to stop yet. Close attention should be paid to the zones C1-1 and C2-1 in later works, especially the disintegration of the rock lump at their toe and their cracking development.
下一条:青藏高原三江并流区重大堵江滑坡孕育规律 及其防灾挑战
【关闭】