期刊导航

论文摘要

基于频谱能量分析的地质雷达探测图像判读研究

Study on interpretation based on frequency spectrum energy analysis of ground penetrating radar detection image

作者:温世儒(江西理工大学建筑与测绘工程学院);杨晓华(长安大学 公路学院 陕西 西安);郭元术(长安大学 信息工程学院 陕西 西安)

Author:WEN Shi-ru(School of Architectural and Surveying Mapping Engineering,Jiangxi University of Science and Technology);YANG Xiao-hua(School of Highway,Chang’an University,Xi’an);GUO Yuan-shu(School of Information Engineering,Chang’an University,Xi’an)

收稿日期:2020-03-23          年卷(期)页码:2020,52(6):-

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:公路隧道;地质雷达;预报;频谱能量;判读

Key words:highway tunnel; ground penetrating radar; prediction; frequency spectrum energy; interpretation

基金项目:1、国家自然科学基金面上项目:基于应力监测的岩质边坡预警机制研究,NO.41272285;2、江西省教育厅科学技术研究项目:岩溶隧道不同风化程度灰岩的地质雷达波形响应特征研究,NO.GJJ170564

中文摘要

通过人工肉眼对地质雷达探测图像进行判读的方法易受判读人员主观性、经验性影响。为了规避这一不足,提出一种基于Counterlet等高变换和K-Means++均值聚类分析的频谱能量判读方法。以实际公路隧道为依托,经现场探测获取不良地质体的原始探测数据;采用IDSP探测数据分析软件生成原始图像及实施背景去除、滤波等时域、频域预处理以提高信噪比;基于子带分布系数采用Counterlet对预处理后的图像进行分解和重构,并采用K-Means++算法将重构后图像中的频率信息转化为颜色特征;利用MATLAB对颜色特征进行提取并据此建立不良地质体颜色特征样本库,将原始探测图像与样本库进行匹配对比以实现自动判读。结果表明:采用Counterlet等高变换对多方向、多分辨率、多尺度的地质雷达图像进行分解与重构是可行的,曲线边缘逼近效果良好,重构后的图像无信息丢失;K-Means++算法能实现地质雷达灰度图像中能量~频率~色彩的转化,转化后的图像色彩突出、直观;频谱能量的匹配对比能较准确、快速地实现自动判读及较好地规避个体主观性。

英文摘要

The interpretation method of GPR (Ground Penetrating Radar) detection image by human eye is easily affected by the subjectivity and experience of interpreters. In order to avoid this shortcoming, a spectral energy interpretation method based on Counterlet contour transform and K-Means++ clustering analysis is proposed. Based on actual highway tunnels, the original detection data of unfavorable geological bodies were obtained through on-site detection. IDSP detection data analysis software was used to generate the original image, and time domain and frequency domain preprocessing such as background removal and filtering were implemented to improve the signal-to-noise ratio. Based on subband distribution coefficient, Counterlet was used to decompose and reconstruct the preprocessed image and K-Means++ algorithm was used to convert the frequency information in the reconstructed image into color features. The color features were extracted by MATLAB, and a sample library of color features of unfavorable geological bodies was established accordingly. The original detection image was matched and compared with the sample library to realize automatic interpretation. Facts and figures show that it is feasible to decompose and reconstruct multi-directional, multi-resolution and multi-scale GPR images by using Counterlet contour transformation, the curve edge approximation effect is good and the reconstructed images have no information loss. K-Means++ algorithm can realize the conversion of energy to frequency to color in the gray-scale image of GPR, and the converted image has prominent and intuitive color. The matching and comparison of spectral energy can realize automatic interpretation more accurately and quickly and avoid individual subjectivity better.

上一条:青岛地区大气环境下混凝土内部温湿度响应

下一条:考虑块石长轴倾角和土石接触面的土石混合体边坡稳定性研究

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065