期刊导航

论文摘要

基于高斯过程的飞行转弯区一致性监视技术研究

Research on Flight Conformance Monitoring During Turns Based on Gaussian Processes

作者:严宏(中国民用航空飞行学院 计算机学院, 四川 广汉 618307;四川大学 国家空管自动化系统技术重点实验室, 四川 成都 610064);杨波(四川大学 国家空管自动化系统技术重点实验室, 四川 成都 610064);刘洪(四川大学 国家空管自动化系统技术重点实验室, 四川 成都 610064);杨红雨(四川大学 国家空管自动化系统技术重点实验室, 四川 成都 610064)

Author:YAN Hong(College of Computer Sci., Civil Aviation Flight Univ. of China, Guanghan 618307, China;National Key Lab. of Air Traffic Control Automation System Technol., Sichuan Univ., Chengdu 610064, China);YANG Bo(National Key Lab. of Air Traffic Control Automation System Technol., Sichuan Univ., Chengdu 610064, China);LIU Hong(National Key Lab. of Air Traffic Control Automation System Technol., Sichuan Univ., Chengdu 610064, China);YANG Hongyu(National Key Lab. of Air Traffic Control Automation System Technol., Sichuan Univ., Chengdu 610064, China)

收稿日期:2017-07-18          年卷(期)页码:2018,50(4):116-122

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:飞行轨迹;高斯分布;采样;协方差矩阵

Key words:trajectories;Gaussian distribution;sampling;covariance matrix

基金项目:民航安全能力建设资金资助项目(2146903);中国民用航空飞行学院青年基金资助项目(Q2016-115)

中文摘要

针对导航误差和监视误差等干扰因素以及飞行转弯固有的不确定性和可变性,比如转弯开始点和转弯半径的差异,造成飞行转弯区内难以判定航空器是否与飞行计划或管制指令一致的问题,提出了一种比较航空器系统状态预期值和实际测量值的一致性监视方法,该方法基于高斯过程对转弯区的一致性飞行建模,通过模型求解出预期的状态值范围,其中引入附加的偏离项使模型有效地描述了飞行转弯区各个时段内系统状态值的合理变化趋势。系统状态预期值的计算通过高斯过程的贝叶斯推理框架完成,并且使用随机采样的方法解决引入偏离项后的后验概率无法求取解析解的问题。构建的飞行模型使用历史飞行数据进行训练,避免了直接依据飞行计划或管制指令计算系统状态预期值的方式下容易出现的问题,主要是无法充分考虑实际情况下各种因素对于系统状态值的影响。使用实际飞行场景中的监视系统数据进行测试,结果表明该方法计算得出的系统状态预期值区间反映了系统状态值的合理变化范围,能够有效判定一致性飞行。此外,相比于基于轨迹偏差阈值的判定方法,该方法能够取得更优的误报率和检测时间,避免了人为设置阈值不合理造成的影响,同时体现了该方法易于扩展,便于利用监视系统中位置信息之外的测量值提高一致性监视的性能。

英文摘要

In order to solve the problem of conformance monitoring during turns in which the disturbances, inherent uncertainties and variabilities, such as navigation errors,monitoring system errors, and differences of turning point and turning radius, make it difficult to determine whether an aircraft conforms to the assigned flight plan or the issued command, an approach based on the comparison between the expected state values and the measured state values was proposed. The interval of expected state values was calculated through modeling the conforming flights using Gaussian Processes. The deviation term was introduced to enable the model to describe the reasonable change of state values at different time points during turns. The calculation was completed under the framework of Bayesian inference in Gaussian Processes, and stochastic sampling was used to compute the posterior distribution which is analytically intractable after introducing deviation term. The proposed model for conforming flights was trained by the historical flight data. It can avoid common problems when the expected state values were inferred directly from flight plan or control command, mainly including the failure to account for the influences caused by various factors in practical situations. The experiments using flight data from realistic surveillance system showed that the calculated interval of expected state values in the proposed model reflects the reasonable range of state values and therefore is capable of monitoring conforming flights. Furthermore, compared with the conformance monitoring based on threshold value of trajectory deviation, this proposed approach achieved better false alarm rate and detection time and avoid the performance issues caused by improper settings of threshold value. The results also showed that this proposed approach has extensibility and can improve the performance of conformance monitoring by using more state values in addition to position information.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065