期刊导航

论文摘要

基于介质变黏-弹特征的深海柱塞泵压力控制特性

Pressure Control Characteristics for Deep-sea Piston Pumps Depend on Variable Viscosity-Elasticity Properties of Hydraulic Oil

作者:曹学鹏(长安大学 工程机械学院, 陕西 西安 710064;公路养护装备国家工程实验室, 陕西 西安 710064);周钊强(长安大学 工程机械学院, 陕西 西安 710064;北汽福田诸城奥铃汽车厂, 山东 诸城 262200);曾致豪(长安大学 工程机械学院, 陕西 西安 710064);卫昌辰(长安大学 工程机械学院, 陕西 西安 710064)

Author:CAO Xuepeng(College of Construction Machinery, Chang'an Univ., Xi'an 710064, China;National Eng. Lab. for Highway Maintenance Equipment, Xi'an 710064, China);ZHOU Zhaoqiang(College of Construction Machinery, Chang'an Univ., Xi'an 710064, China;Zhucheng Ollin Automobile Factory of Beijing Foton Co. Ltd.,Zhucheng 262200, China);ZENG Zhihao(College of Construction Machinery, Chang'an Univ., Xi'an 710064, China);WEI Changchen(College of Construction Machinery, Chang'an Univ., Xi'an 710064, China)

收稿日期:2018-01-19          年卷(期)页码:2019,51(2):151-159

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:变黏度-动刚度模型;控制模型;影响机理

Key words:variable viscosity-dynamic stiffness model;control model;influence mechanism

基金项目:国家自然科学基金资助项目(51509006);中央高校基本科研业务费资助项目(300102258201);陕西省交通厅科研资助项目(18-16K)

中文摘要

为预测变深环境下柱塞泵压力控制性能变化规律,基于水下动黏度-变刚度介质模型建立深海柱塞泵压力控制系统模型。从稳定性、快速响应性与稳态误差等3个方面对系统控制性能进行了综合分析,得出变深环境下,只考虑黏度影响时,系统稳定性指标和动态响应参数由初态值,即相位裕度59.4 °、幅值裕度8.77 dB、上升时间0.045 s、稳态误差3.4%,分别增加至138.4 °、23.4 dB、0.28 s、7.4%;只考虑刚度影响时,各参数由初态值分别减少为42.6 °、23.4 dB、0.038 s、1.2%;考虑黏度-刚度复合作用时,各参数由初态值分别增加至137.6 °、23.1 dB、0.265 s、7.3%。结果表明:变深环境下只考虑黏度影响与考虑黏度-刚度复合作用时,系统稳定性均随水深的增加而增加,快速响应性与稳态误差均随水深的增加而下降;只考虑刚度影响时,相关特性的变化趋势刚好相反;并得出在0~1 000 m、1 000~7 000 m两海层下泵压力控制系统可分别视作变黏度-动刚度系统、变黏度-定刚度系统。最后,通过模拟变深环境下泵的动静性能试验,验证了上述理论分析结果的合理性和有效性。

英文摘要

In order to predict the changing rule of pressure control performance of axial piston pump under oceanic environment, the pressure control system model of piston pump was established based on the underwater hydraulic oil viscosity-stiffness model. The system control performance was comprehensively analyzed from the aspects of stability, rapid response and control accuracy, and the results showed that if the variation factor was the viscosity, the parameters of the system phase margin, amplitude margin, rise time, and steady state were increased from the initial values of 59.4 °, 8.77 dB, 0.045 s, and 3.4% to 138.4 °, 23.4 dB, 0.28 s, and 7.4%, respectively. If the variation factor was stiffness, the parameters of the three characteristics were reduced from initial values to 42.6 °, 23.4 dB, 0.038 s, and 1.2%, respectively.When considering the composite effects of viscosity and stiffness, the parameters of the three characteristics were increased from the initial values to 137.6 °, 23.1 dB, 0.265 s, and 7.3% respectively. The analysis results showed that when the effects of viscosity and considering the comprehensive effects of viscosity-stiffness, the stability of the system increased with the increase of water depth, meanwhile the rapid response and control precision decreased with the increase of water depth. When considering the effects of stiffness, the changing trend of the three characteristics were quite opposite. It was pointed out that the control systems can be regarded as variable viscosity-dynamic stiffness control systems and variable viscosity-fixed stiffness control systems at the sea level of 0~1 000 m and 1 000~7 000 m, respectively. Finally, the experimental results further confirmed the results of the theoretical analysis.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065