期刊导航

论文摘要

考虑基岩水平破坏的嵌岩桩嵌岩深度计算方法

Calculation Method of Rock-socketed Depth for Rock-socketed Piles Based on Bedrock Horizontal Failure

作者:尹平保(长沙理工大学 土木工程学院, 湖南 长沙 410114);杨莹(长沙理工大学 土木工程学院, 湖南 长沙 410114);雷勇(湖南科技大学 土木工程学院, 湖南 湘潭 411201);贺炜(长沙理工大学 土木工程学院, 湖南 长沙 410114);张建仁(长沙理工大学 土木工程学院, 湖南 长沙 410114)

Author:YIN Pingbao(School of Civil Eng., Changsha Univ. of Sci. & Technol., Changsha 410114, China);YANG Ying(School of Civil Eng., Changsha Univ. of Sci. & Technol., Changsha 410114, China);LEI Yong(College of Civil Eng., Hunan Univ. of Sci. and Technol., Xiangtan 411201, China);HE Wei(School of Civil Eng., Changsha Univ. of Sci. & Technol., Changsha 410114, China);ZHANG Jianren(School of Civil Eng., Changsha Univ. of Sci. & Technol., Changsha 410114, China)

收稿日期:2017-11-14          年卷(期)页码:2019,51(2):71-77

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:桩基础;嵌岩深度;水平荷载;Hoek-Brown强度准则;极限承载力

Key words:pile foundation;rock-socketed depth;horizontal load;Hoek-Brown strength criterion;ultimate bearing capacity

基金项目:国家自然科学基金资助项目(51408066;51478051);湖南省教育厅优秀青年资助项目(16B013);中国博士后科学基金资助项目(2017M612544)

中文摘要

为了准确计算嵌岩桩的嵌固深度,既要考虑桩侧岩石的破坏特征,还应考虑基岩顶面水平力和弯矩的共同作用。根据嵌岩桩嵌岩段桩侧岩石的水平极限承载特性,建立了嵌岩桩嵌岩深度计算的简化分析模型,并基于Hoek-Brown强度准则和静力平衡原理,推导了考虑基岩顶面水平力和弯矩共同作用的嵌岩桩嵌岩深度理论计算公式。算例对比分析发现,通过理论公式计算得到的嵌岩深度值与规范方法的结果更为接近。在此基础上探讨了基岩顶面处水平荷载、桩径、桩侧岩石抗压强度、岩石质量分类指标对嵌岩桩嵌固深度的影响,计算结果表明:嵌岩深度随水平力增加近似呈现线性关系增大,随弯矩增加呈现非线性关系增大,而随桩径、岩石单轴抗压强度及岩体地质力学分类指标RMR增加呈现非线性关系减小。保持其他条件相同,当桩径由1.0 m增大到2.0 m和3.0 m时,对应的最小嵌岩深度约分别减小32%和44%;当岩石单轴抗压强度由15 MPa增加到30、45和60 MPa时,对应的最小嵌岩深度分别减小44.4%、59.7%及67.6%;当岩体地质力学分类指标RMR值由30增加到45、60和75时,对应的最小嵌岩深度分别减小48.9%、72.3%及84.2%。与岩石单轴抗压强度相比,岩体地质力学分类指标RMR对嵌岩深度的影响更为显著,当RMR值大于85时,嵌岩深度不足1.0 m。实际工程设计时,应综合考虑岩石的强度、质量以及桩径等方面以确定嵌岩桩的最佳嵌岩深度。

英文摘要

In order to calculate the rock-socketed depth of rock-socketed piles, the failure characteristics of rock outside piles and the horizontal force and bending moment on the top of bedrock should be taken into account. According to horizontal ultimate bearing characteristics of rock-socketed pile, a simplified analysis model of rock-socketed depth calculation was established. Based on the Hoek-Brown strength criterion and static balance principle, a theoretical calculation formula of rock-socketed depth of rock-socketed piles was deduced with the consideration of horizontal force and bending moment at the top of bedrock. Comparison and analysis of an engineering example showed that values of rock-socketed depth calculated by theoretical formulas are closer to the method of codes. And then the influences of horizontal load, pile diameter, rock uniaxial compressive strength and rock mass rating indexRMRon rock-socketed depths were discussed. The results showed that the rock-socketed depth increases linearly with the increase of horizontal force, non-linearly with the increase of bending moment, and decreases non-linearly with the increase of pile diameter, rock uniaxial compressive strength and rock mass rating indexRMR. At the same condition, when pile diameter increases from 1.0 m to 2.0 m and 3.0 m, rock-socketed depth decreases by 32% and 44%, respectively. When rock uniaxial compressive strength increases from 15 MPa to 30, 45 and 60 MPa, rock-socketed depth reduces by 44.4%, 59.7% and 67.6%, respectively. When the value of rock mass rating indexRMRincreases from 30 to 45, 60 and 75, rock-socketed depth reduces by 48.9%, 72.3% and 84.2%, respectively. Rock mass rating indexRMRhas a significant effect on rock-socketed depth. If the value of rock mass rating indexRMRis more than 85, the rock-socketed depth will less than 1.0 m. When determining the optimum rock-socketed depth of actual rock socketed piles, the strength and quality of rocks and pile diameters should be considered comprehensively.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065