含钪赤泥氯化钠离析焙烧-弱磁选-盐酸浸出分离铁、钪试验研究
Research on Separating Iron and Scandium of Scandium-contained Red Mud Using Sodium Chloride Segregation Roasting-Low Intensity Magnetic Separation-Hydrochloric Acid Leaching
作者:肖军辉(西南科技大学 环境与资源学院, 四川 绵阳 621010;国土资源部放射性与稀有稀散矿产重点实验室, 广东 韶关 512026;省部共建耐火材料与冶金国家重点实验室(武汉科技大学), 湖北 武汉 030192;四川省非金属矿粉体改性与高质化利用技术工程实验室(西南科技大学), 四川 绵阳 621010);梁冠杰(国土资源部放射性与稀有稀散矿产重点实验室, 广东 韶关 512026);黄雯孝(国土资源部放射性与稀有稀散矿产重点实验室, 广东 韶关 512026);丁威(西南科技大学 环境与资源学院, 四川 绵阳 621010;四川省非金属矿粉体改性与高质化利用技术工程实验室(西南科技大学), 四川 绵阳 621010);彭杨(西南科技大学 环境与资源学院, 四川 绵阳 621010;四川省非金属矿粉体改性与高质化利用技术工程实验室(西南科技大学), 四川 绵阳 621010);吴强(西南科技大学 环境与资源学院, 四川 绵阳 621010;四川省非金属矿粉体改性与高质化利用技术工程实验室(西南科技大学), 四川 绵阳 621010)
Author:XIAO Junhui(School of Environment and Resource of Southwest Univ. of Sci. and Technol.,Mianyang 621010, China;Key Lab. of Radioactive and Rare Scattered Minerals, Ministry of Land and Resources, Shaoguan 512026, China;The State Key Lab. of Refractories and Metallurgy (Wuhan Univ. of Sci. and Technol.), Wuhan 030192,China;Sichuan Eng. Lab. of Non-metallic Mineral Powder Modification and High-value Utilization(Southwest Univ. of Sci. and Technol.), Mianyang 621010, China);LIANG Guanjie(Key Lab. of Radioactive and Rare Scattered Minerals, Ministry of Land and Resources, Shaoguan 512026, China);HUANG Wenxiao(Key Lab. of Radioactive and Rare Scattered Minerals, Ministry of Land and Resources, Shaoguan 512026, China);DING Wei(School of Environment and Resource of Southwest Univ. of Sci. and Technol.,Mianyang 621010, China;Sichuan Eng. Lab. of Non-metallic Mineral Powder Modification and High-value Utilization(Southwest Univ. of Sci. and Technol.), Mianyang 621010, China);PENG yang(School of Environment and Resource of Southwest Univ. of Sci. and Technol.,Mianyang 621010, China;Sichuan Eng. Lab. of Non-metallic Mineral Powder Modification and High-value Utilization(Southwest Univ. of Sci. and Technol.), Mianyang 621010, China);WU Qiang(School of Environment and Resource of Southwest Univ. of Sci. and Technol.,Mianyang 621010, China;Sichuan Eng. Lab. of Non-metallic Mineral Powder Modification and High-value Utilization(Southwest Univ. of Sci. and Technol.), Mianyang 621010, China)
收稿日期:2018-07-26 年卷(期)页码:2019,51(4):199-209
期刊名称:工程科学与技术
Journal Name:Advanced Engineering Sciences
关键字:钪;含钪赤泥;离析焙烧;弱磁选;浸出
Key words:scandium;scandium-contained red mud;segregation roasting;low intensity magnetic separation;leaching
基金项目:四川省科技计划项目(2018FZ0092);国土资源部放射性与稀有稀散矿产重点实验室开放课题(RRSM-KF2018-02);省部共建耐火材料与冶金重点实验室主任基金项目(ZR201801)
中文摘要
针对云南含钪赤泥原矿含TFe 25.68%、Sc2O3 70.66 g/t,钪主要以类质同象形式分散于金红石、辉石、长石、白云母、方解石等矿物中,铁、钪分离困难,提出了氯化钠离析焙烧-弱磁选-盐酸浸出的选冶联合工艺处理该含钪赤泥,使铁从赤铁矿转为以金属铁、磁铁矿为主的新物相,破坏载钪矿物的晶体结构,为铁、钪分离创造有利条件。试验结果表明:在离析焙烧温度950 ℃、离析焙烧时间60 min、氯化钠用量10%、焦炭用量15%、焦炭粒度-0.5~0.25 mm、弱磁选磁场强度H=0.12 T、弱磁选磨矿细度为R =2∶3的综合工艺条件下,获得了铁品位为73.99%,含钪5.22 g/t,铁回收率为88.99%的铁精矿;钪浸出率为96.78%,浸出渣中的钪含量为6.37 g/t,铁、钪分离效果显著。MLA、SEM、EPMA分析结果显示:含钪赤泥经过氯化钠离析焙烧后,铁从赤铁矿(Fe2O3)转变为以金属铁(Fe)、磁铁矿(Fe3O4)为主的新铁物相及少量的氧化亚铁(FeO)、硅酸铁(Fe2SiO4);浸出渣主要成分为SiO2、CaO、Al2O3,与浸出前相比较,CaO、Al2O3降低比较明显,浸出渣中没有明显的Sc谱线峰值,这表明弱磁选尾矿经盐酸浸出后,钪绝大部分被溶解掉进入浸出液中,且钪的溶解较为彻底,也进一步验证了含钪赤泥采用氯化钠离析焙烧-弱磁选-盐酸浸出分离铁、钪比较合理,且铁、钪分离效果显著。
英文摘要
The scandium-contained red mud ore in Yunnan contains TFe of 25.68 %, Sc2O3of 70.66 g/t, scandium is dispersed mainly in rutile, pyroxene, feldspar, Muscovite, minerals such as calcite. In order to solve the problem of the separation of iron and scandium, the sodium chloride roasting-low intensity magnetic separation-hydrochloric acid leaching of segregation joint mineral smelting and processing was put forward to processing the scandium-contained red mud. Making the iron from hematite to metallic iron and magnetite in the new phase, scandium mineral crystal structure was destructed and conditions were favorable created for the separation of iron and scandium. Test results showed that iron concentrate of iron grade of 73.99%, scandium contained of 5.22 g/t, iron recovery of 88.99% and the scandium leaching rate of 96.78%, scandium contained of 6.37 g/t in the leaching residue could be obtained under the comprehensive conditions of segregation roasting temperature of 950 ℃, segregation roasting time of 60 min, sodium chloride dosage of 10%, the coke dosage of 15%, the coke size of -0.5~0.25 mm, low intensity magnetic separation, magnetic field intensityH= 0.12 T, low intensity magnetic grinding fineness ofR=2∶3. The results of MLA, SEM and EPMA analysis showed that after scandium red mud was decomposed and roasting with sodium chloride, hematite (Fe2O3) was transformed into new ferrite phase dominated by metal iron (Fe) and magnetite (Fe3O4) and a small amount of ferric oxide (FeO) and ferrosilite(Fe2SiO4).The main compositions of leaching residue were SiO2, CaO and Al2O3. CaO and Al2O3were significantly decreased compared with those before leaching, Leaching residue in no obvious Sc spectrum peak, which indicated that low intensity magnetic separation tailings after hydrochloric acid leaching, most scandium was dissolved into the leaching liquid, and the dissolution of scandium is relatively complete.It is reasonable to the separation of iron and scandium by sodium chloride segregation roasting-low intensity magnetic separation-hydrochloric acid leaching, and the separation of iron and scandium is obviously.
【关闭】