期刊导航

论文摘要

基于压缩采样匹配追踪的稀疏度和稀疏信道联合估计

Joint Sparsity and Sparse Channel Estimation Algorithm Based on CoSaMP

作者:董政(信息工程大学 信息系统工程学院);葛临东(信息工程大学 信息系统工程学院);巩克现(信息工程大学 信息系统工程学院)

Author:Dong Zheng(Communication Eng. College, Info. Eng. Univ.);Ge Lindong(Communication Eng. College, Info. Eng. Univ.);Gong Kexian(Communication Eng. College, Info. Eng. Univ.)

收稿日期:2013-06-04          年卷(期)页码:2014,46(1):121-127

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:压缩感知;压缩采样匹配追踪;稀疏信道估计;稀疏度估计;多径

Key words:compressed sensing;CoSaMP;sparse channel estimation;sparsity estimation;multipath

基金项目:国家自然科学基金资助项目(61072046);河南省基础与前沿计划资助项目(102300410008;132300410049)

中文摘要

针对压缩采样匹配追踪信道估计算法需已知稀疏度而稀疏度不易得到这一问题,研究了一种稀疏度和稀疏信道联合估计算法。首先提出了一种新的稀疏向量的替代,能够在有限长度的训练序列下,得到较好的稀疏度和信道估计效果。然后通过对稀疏信道估计中的噪声分量的分析,提出了一种稀疏度估计算法,结合信道估计最终给出了一种稀疏度和稀疏信道联合估计算法。仿真结果表明:新的稀疏向量的替代在稀疏度和信道估计方面都有明显的优势,并且提出的稀疏度和稀疏信道联合估计算法在性能上好于mCoSaMP算法。

英文摘要

A joint sparsity and sparse channel estimation algorithm based on CoSaMP was proposed.A new kind of sparsity vector substitute was proposed in the new algorithm,which can remarkably reduce the overhead of training sequence and increase the channel capacity.Besides,a new sparsity estimation method was provided for the improved algorithm. Simulation results showed that the new proxy of sparse signal has obvious advantages in both sparsity and channel estimation.The performance of joint sparsity and sparse channel estimation algorithm is better than mCoSaMP algorithm.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065