期刊导航

论文摘要

基于图划分的网状高阶异构数据联合聚类算法

A Net-structure High-order Heterogeneous Data Co-clustering Algorithm Based on Graph Partitioning

作者:杨欣欣(哈尔滨工程大学 计算机科学与技术学院);黄少滨(哈尔滨工程大学 计算机科学与技术学院)

Author:Yang Xinxin(College of Computer Sci. and Technol.,Harbin Eng. Univ.);Huang Shaobin(College of Computer Sci. and Technol.,Harbin Eng. Univ.)

收稿日期:2013-08-27          年卷(期)页码:2014,46(2):105-110

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:网状结构;高阶异构数据;联合聚类;谱聚类

Key words:net-structure;high-order heterogeneous data;co-clustering;spectral clustering

基金项目:国家自然科学基金资助项目(71272216;60903080;60093009);博士后科学基金资助项目(2012M5100480);国家科技支撑计划资助项目(2009BAH42B02;2012BAH08B02);中央高校基本科研业务费专项基金资助项目(HEUCFZ1212;HEUCFT1208)

中文摘要

目前已有的高阶联合聚类算法主要集中于分析星型高阶异构数据,然而实际应用中,存在大量网状高阶异构数据。为了有效挖掘网状高阶异构数据内部隐藏的结构,提出一种基于图划分的高阶联合聚类算法(简称为GPHCC),该算法将网状高阶异构数据的聚类问题转化为多对二部图的最小正则割划分问题。为了降低计算复杂度,将此优化问题转化为半正定问题求解。实验结果表明GPHCC算法优于目前已有的5种2阶联合聚类算法和5种高阶联合聚类算法。

英文摘要

Existing high-order co-clustering algorithm just can be suitable for analyzing star-structure high-order heterogeneous data.In order to analyze net-structure high-order heterogeneous data,a high-order co-clustering algorithm based on graph partitioning was proposed.The problem of high-order co-clustering was converted to optimal problem of graph partitioning of minimum normal cut.In order to reduce computational complexity,the optimal problem was converted to semi-definite problem.Experimental studies showed that the qualities of clustering results of GPHCC are superior five pair-wise coclustering algorithms and five high-order co-clustering algorithms.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065