期刊导航

论文摘要

一种去除Gamma乘性噪声的全变分模型

A Novel Total Variational Model for Gamma Multiplicative Noise Removal

作者:胡学刚(重庆邮电大学 计算机科学与技术学院;重庆邮电大学 系统理论及应用研究中心);楼越芳(重庆邮电大学 计算机科学与技术学院)

Author:Hu Xuegang(College of Computer Sci. and Technol.,Chongqing Univ. of Posts and Telecommunications;Research Center of Systems Theory and Applications,Chongqing Univ. of Posts and Telecommunications);Lou Yuefang(College of Computer Sci. and Technol.,Chongqing Univ. of Posts and Telecommunications)

收稿日期:2013-05-29          年卷(期)页码:2014,46(2):59-65

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:图像去噪;乘性噪声;变分法;凸函数

Key words:image denosing;multiplicative noise;variational approach;convex function

基金项目:国家自然科学基金资助项目(11071266);重庆市教委科研基金资助项目(KJ100505)

中文摘要

针对现有的去除图像乘性噪声变分模型存在“阶梯效应”和图像模糊等问题,提出了一种具有严格凸性的去除图像Gamma乘性噪声的全变分新模型。首先,通过分析Gamma噪声的数学特征,采用最大似然估计方法和贝叶斯公式导出了全变分模型的保真项,引入协调项,并利用一种新颖的混合测度构造了新的模型。再使用交替迭代最优化算法,给出了数值解,并从理论上证明了该迭代序列的收敛性。实验结果表明,本模型有很好的去噪效果,在有效抑制图像中的“阶梯效应”的同时能更多地保留图像的纹理细节特征。

英文摘要

A novel total variational model with strict convexity was proposed to solve the problem that the‘step-casing effect’ and image blurring are always with the existing variational models for multiplicative noise removal.Firstly,the fidelity term of the modified model was derived by applying the maximum likelihood estimate method and the Bayesian formulation.Then,the new total variational model was developed by combining the fidelity term,a fitting term and a hybrid measurement.An alternating minimization algorithm was used to find out the minimizer of such an objective function and proved the convergence for the variational problem.Finally,the numerical experiments showed that the texture details in the denoised images are kept and the ‘step-casing effect’ is suppressed.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065