期刊导航

论文摘要

基于代理模型的水文模型参数多目标优化

Multi-objective Optimization for Hydrological Models Using Surrogate Modeling

作者:宋晓猛(南京水利科学研究院 水文水资源与水利工程科学国家重点实验室;水利部 应对气候变化研究中心);张建云(南京水利科学研究院 水文水资源与水利工程科学国家重点实验室;水利部 应对气候变化研究中心);孔凡哲(中国矿业大学 资源与地球科学学院);占车生(中国科学院 地理科学与资源研究所 陆地水循环及地表过程重点实验室)

Author:Song Xiaomeng(State Key Lab. of Hydrology-Water Resources & Hydraulic Eng.,Nanjing Hydraulic Research Inst.;Research Center for Climate Change,Ministry of Water Resources);Zhang Jianyun(State Key Lab. of Hydrology-Water Resources & Hydraulic Eng.,Nanjing Hydraulic Research Inst.;Research Center for Climate Change,Ministry of Water Resources);Kong Fanzhe(School of Resource and Earth Sci.,China Univ. of Mining & Technol.);Zhan Chesheng(Key Lab. of Water Cycle & Related Land Surface,Inst. of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences)

收稿日期:2013-07-30          年卷(期)页码:2014,46(2):36-45

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:新安江模型;参数率定;多目标优化;代理模型技术;不确定性分析

Key words:Xin’anjiang model;parameter calibration;multi-objective optimization;surrogate modeling;uncertainty analysis

基金项目:国家“973”重点基础研究发展计划资助项目(2010CB951103);国家自然科学基金项目(41330854;L1322014);国家“十二五”科技支撑计划资助项目(2012BAC21B01;2012BAC19B03)

中文摘要

针对传统多目标优化算法存在计算复杂且效率偏低的问题,提出了一种基于代理模型的多目标优化方案。以淮河大坡岭水文站以上流域为例,采用多元自适应回归样条方法构建新安江模型参数与不同目标的响应曲面关系,进而估计参数的近似Pareto解集。采用4种目标函数(总水量误差系数、均方根误差、高水流量误差系数和低水流量误差系数)和4种模型精度评价指标(Nash-Sutcliffe效率系数、洪峰流量相对误差、径流深相对误差和峰现时间误差)评定模型优化结果,选择10场洪水过程和4种不确定性评价指标估计Pareto解集的模型预测区间特征。结果表明,代理模型可有效降低模型评估与优化过程中的计算消耗,为实现多目标优化的高效性奠定了基础。此外,不确定性分析结果也进一步验证了方法的有效性和结果的可靠性,为复杂模型参数优化与不确定性评估提供了参考。

英文摘要

A new multi-objective optimization scheme based on surrogate modeling was proposed.Taking the Dapoling catchment as a case study, the response relationship between the parameter of Xin’anjiang model and different objectives was constructed based on multivariate adaptive regression splines,to estimate the Pareto sets or non-dominant solutions.Four objective functions of overall water balance error,root mean square error,relative error of peak flows,and low flows were used to optimize model parameters,and four evaluation criteria of Nash-Sutcliffe efficiency coefficient (NSE),relative error of peak flow and runoff volume (REPF and RERV),and time error of peak flow (TEPF) were selected to quantify the goodness-of-fit of observations against simulation model calculated values.In addition,four uncertainty criteria were applied to assess the hydrological uncertainty ranges with the Pareto solutions for ten flood events.Results demonstrated that the surrogate-modeling based method increases the feasibility of applying parameter optimization to computationally intensive simulation models via reducing the number of simulation runs.Simultaneously,uncertainty analysis results also revealed that the proposed method based on surrogate modeling is high efficiency and easy to operate.Thereby,the method is feasible for practical operations for complex simulation models in model calibration and uncertainty analysis.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065