期刊导航

论文摘要

水平划分决策表的属性约简算法

An Algorithm for Attribute Reduction Based on Horizontally Partitioning Decision Table

作者:葛浩(安徽大学 计算智能与信号处理教育部重点实验室;滁州学院 机械与电子工程学院;安徽大学 计算机科学与技术学院);李龙澍(安徽大学 计算智能与信号处理教育部重点实验室;安徽大学 计算机科学与技术学院);徐怡(安徽大学 计算智能与信号处理教育部重点实验室;安徽大学 计算机科学与技术学院);杨传健(滁州学院 计算机与信息工程学院)

Author:Ge Hao(Key Lab. of Computation Intelligence and Signal Processing of Education Ministry,Anhui Univ.;School of Mechanical and Electronic Eng.,Chuzhou Univ.;School of Computer Sci. and Technol.,Anhui Univ.);Li Longshu(Key Lab. of Computation Intelligence and Signal Processing of Education Ministry,Anhui Univ.;School of Computer Sci. and Technol.,Anhui Univ.);Xu Yi(Key Lab. of Computation Intelligence and Signal Processing of Education Ministry,Anhui Univ.;School of Computer Sci. and Technol.,Anhui Univ.);Yang Chuanjian(School of Computer and Info. Eng.,Chuzhou Univ.)

收稿日期:2013-10-14          年卷(期)页码:2014,46(3):89-94

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:粗糙集;决策差别集;核属性;属性约简

Key words:rough set;decision discernibility set;core attributes;attribute reduction

基金项目:国家自然科学基金资助项目(5130711);安徽省自然科学基金资助项目(1308085QF114);安徽高等学校省级自然科学研究重点资助项目(KJ2013A015;KJ2012A212);滁州学院优秀青年人才基金重点项目(2013RC003);计算智能与信号处理教育部重点实验室开发课题基金资助项目

中文摘要

差别矩阵属性约简是粗糙集重要约简方法之一,但在处理不一致大数据集时存在不足。为此,首先提出决策差别集的概念,并给出基于决策差别集的属性约简定义,同时研究了由该定义获得的约简与正区域约简之间的等价性。接着,给出水平划分决策表的方法,并将子决策表分配到不同的网络节点上构建子决策差别集,并行完成核属性和属性约简求解。实例分析和UCI中数据集的实验比较表明所提出的约简算法是正确的、高效的。

英文摘要

The notion of decision discernibility set and definition of attribute reduction based on decision discernibility set were presented.It was proved that attribute reduction acquired from the definition is equivalence to attribute reduction based on positive region.And then, the method of horizontally partitioning decision table was proposed and the sub-decision table can be assigned to different network nodes and finish computing core attribute and attribute reduction based on sub-decision discernibility set.Finally, the example analysis experiment results form datasets of UCI showed that the proposed parallel algorithms are efficient and effective.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065