期刊导航

论文摘要

2元相关性量子行为粒子群优化算法研究

Studyofthe BinaryCorrelationQuantum-behavedPSOAlgorithm

作者:吴涛(西南交通大学信息科学与技术学院);陈曦(西南民族大学 计算机科学与技术学院);严余松(西南交通大学信息科学与技术学院)

Author:Wu Tao(SchoolofComputerSci.&Technol.,SouthwestJiaotongUniv.);Chen Xi(Schoolof ComputerSci.&Technol.,SouthwestUniv.forNationalities);Yan Yusong(SchoolofComputerSci.&Technol.,SouthwestJiaotongUniv.)

收稿日期:2013-10-22          年卷(期)页码:2014,46(4):103-110

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:粒子群优化;量子势阱;种群多样性;收敛

Key words:particleswarmoptimization;quantumpotentialwell;populationdiversity;convergence

基金项目:国家自然科学基金资助项目(61104175);四川省软科学研究计划资助项目(2012ZR0022);四川省科技支撑计划资助项目(2012GZX0090)

中文摘要

针对QPSO(qantum-behavedparticleswarmoptimization)算法中的信息加工问题,首先对势阱中心公式中的随机因子进行分析,提出了2元相关因子的概念,并使用正态Copula函数建立了粒子对自身经验信息pbest和群体共享信息gbest认知的内在联系。接着,提出了2元相关性QPSO(binarycorrelationQPSO,简称BC-QPSO)算法,并通过仿真实验给出相关因子的相关程度与种群多样性的关系。最后对6个测试函数的仿真结果证明,BC-QPSO算法通过选择合适的相关系数ρ的取值,可以获得更好的优化性能。

英文摘要

To study the information processing method in QPSO(quantum-behaved particle swarm optimization) algorithm,random factors in the potential well center formula of QPSO was analyzed,the bivariate correlation factors concept was proposed,and internal relations between particles’own experience information (pbest) and group sharing information(gbest) using Normal Copula functions was established.Then,the binary correlations QPSO algorithm (BC-QPSO) was proposed,and the relations between the bivariate correlation factors and population diversity were studied through simulations. Simulation results of the six test functions showed that BC-QPSO algorithm outperfoms the standard QPSO algorithm in terms of optimization results by selecting the appropriate values of correlation coefficient.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065