期刊导航

论文摘要

基于集合卡尔曼滤波的河网水情数据同化

DataAssimilationofRiverNetworksUsingEnsembleKalmanFilteringAlgorithm

作者:陈一帆(浙江省水利河口研究院);程伟平(浙江大学 水工结构与水环境研究所);钱镜林(浙江省水利河口研究院);徐庆华(浙江省水利河口研究院)

Author:Chen Yifan(ZhejiangInst.ofHydraulic&Estuary);Cheng Weiping(Inst.ofHydraulicStructuresandWaterEnvironmentResearch,ZhejiangUniv.);Qian Jinglin(ZhejiangInst.ofHydraulic&Estuary);Xu Qinghua(ZhejiangInst.ofHydraulic&Estuary)

收稿日期:2013-11-14          年卷(期)页码:2014,46(4):26-32

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:河网;数据同化;集合卡尔曼滤波

Key words:rivernetwork;dataassimilation;ensembleKalmanfilteringalgorithm

基金项目:水体污染控制与治理国家科技重大专项项目资助(2008ZX07421-006);浙江省重点科技创新团队资助项目(2010R50035)

中文摘要

为解决河网非线性动态系统的数据同化问题,采用基于集合思想的集合卡尔曼滤波来实时校正河网水力模型状态变量,以提高河网水情仿真与预报的计算精度。集合卡尔曼滤波的关键在于状态初始集合的设置,作者采用BoxMuller方法生成一组服从正态分布的随机集合,通过一个由14条河段组成的河网水力仿真算例系统分析了集合大小、集合标准差对数据同化效果的影响,并将得到的初步结论应用到实例计算中,获得了良好的数据同化效果。结果表明:集合卡尔曼滤波算法应用简便,适用范围广,能够有效地进行河网非线性动态系统的数据同化;在设置水位状态变量初始集合时,建议取集合规模50~100、标准差0.001~0.005 m。

英文摘要

In order to improve the accuracy of river hydraulic model, ensemble Kalman filtering method based on the concept of ensemble was used for real-time updating model states.The key of ensemble Kalman filter lied in the set of initial state ensemble,so that Box Muller method was adopted to generate a set of normally distributed random ensemble.A simulation of a river network composed of 14 channels was used to systematically analyze the data assimilation effect about size and standard deviation of ensemble,gaining preliminary conclusions which were applied to a real case.The results showed that the ensemble Kalman filtering algorithm with easy and wide-range application is able to effectively carry out data assimilation of river nonlinear dynamic system, and ensemble scale ranging form 50 to 100 along with standard deviation ranging from 0.001 to 0.005 m is recommended when setting the initial stage state ensemble.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065