期刊导航

论文摘要

一种改进的双因子自适应FastICA算法

AnImproved DoubleFactorAdaptiveFastICAAlgorithm

作者:尹洪伟(海军航空工程学院七系);李国林(海军航空工程学院七系);路翠华(海军航空工程学院七系)

Author:Yin Hongwei(No.7Dept.,NavalAeronauticalandAstronauticalUniv.);Li Guolin(No.8Dept.,NavalAeronauticalandAstronauticalUniv.);Lu Cuihua(No.9Dept.,NavalAeronauticalandAstronauticalUniv.)

收稿日期:2014-05-15          年卷(期)页码:2014,46(6):128-132

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:FastICA;盲信号分离;独立分量分析

Key words:FastICA;blindsignalseparation;independentcomponentanalysis

基金项目:国家自然科学基金资助项目(61102165)

中文摘要

为解决快速独立分量分析算法(FastICA)对初值权值敏感的问题,提出一种双收敛因子FastICA算法(doubleconvergencefactorfastICA,DCF-FastICA)。该算法利用2个不同步长因子的FastICA算法进行组合,并通过梯度算法自适应调节两分离权值矩阵的组合系数,从而得到最优权值分离矩阵。理论分析与实验结果表明,DCF-FastICA算法比以往改进算法具有更明显的优势,不仅改善了初值权值敏感问题,而且可在几乎不损失分离精度的情况下,使平均分离速度比原算法提高近70%,迭代次数比原算法减少近80%。

英文摘要

A novel algorithm called double convergence factors FastICA (DCF-FastICA) was proposed to solve the problem that the FastICA algorithm is sensitive to the initial weights.Two FastICA algorithms with different step size factors were combined in this method,and the combination coefficient was adjusted using the gradient algorithm until the optimal separation matrix was obtained.Theoretical analysis and experimental simulation showed that the proposed algorithm can produce better separation result compared with the previous improved algorithms,the problem of initial weights sensitivity could be resolved with almost no loss of separation precision,the average separation speed is improved nearly 70% and the number of iterations reduced nearly 80% compared with the original FastICA algorithm.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065