期刊导航

论文摘要

概念性水文模型参数多目标率定及参数组合预报

StudyonParameterMulti-objectiveCalibrationandParameterCombinationForecastof ConceptualHydrologicalModel

作者:欧阳硕(长江水利委员会 水文局;华中科技大学 水电与数字化工程学院);徐高洪(长江水利委员会 水文局);戴明龙(长江水利委员会 水文局;华中科技大学 水电与数字化工程学院);周建中(华中科技大学 水电与数字化工程学院)

Author:Ouyang Shuo(Bureau of Hydrology,Changjiang Water Resources Commission;CollegeofHydropowerandInfo.Eng.,HuazhongUniv.ofSci.andTechnol.);Xu Gaohong(Bureau of Hydrology,Changjiang Water Resources Commission);Dai Minglong(CollegeofHydropowerandInfo.Eng.,HuazhongUniv.ofSci.andTechnol.);Zhou Jianzhong(Bureau of Hydrology,Changjiang Water Resources Commission;CollegeofHydropowerandInfo.Eng.,HuazhongUniv.ofSci.andTechnol.)

收稿日期:2013-11-17          年卷(期)页码:2014,46(6):63-70

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:概念性水文模型;参数率定;多目标;参数组合预报

Key words:conceptualhydrologicalmodel;parametercalibration;multi-objective;parameterscombinationforecast

基金项目:国家自然科学基金资助项目(51239004)

中文摘要

针对概念性水文模型参数优化率定问题,以大、小径流过程对应的水文特性为切入点,考虑流域水文系统不同产汇流特性,提出一种多目标文化自适应仿电磁学算法(multi-objectiveculturalself-adaptiveelectromagnetism-likemechanism,MOCSEM)求解水文模型参数率定问题,并基于MOCSEM的优化结果,提出一种简便的自识别参数组合预报方法。在此基础上,将MOCSEM算法应用于概念性水文模型——新安江模型的参数多目标优化率定,与其他算法进行对比分析,应用文中提出的自识别参数组合预报方法,尝试找到一种能权衡流域水文系统不同水文特性的自识别参数组合方式,可以为水文预报人员提供更为精确的流域径流预报方法。

英文摘要

To obtain a successful parameter calibration of conceptual hydrological model,hydrological characteristics of large and small runoff process were chosen for considering different characteristics of generation and concentration.A multi-objective cultural self-adaptive electromagnetism-like mechanism (MOCSEM) algorithm was proposed to solve parameter calibration problem.The MOCSEM was tested,firstly,and applied to multi-objective parameters calibration of Xinanjiang model.After achieving satisfactory performance on parameters calibration problems,the self-identifying parameters combination forecast method was implemented for trying to find a self-identifying parameter combination mode.The results showed that the proposed method can provide more precise forecast results than a single parameter scheme for hydrological forecasters.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065