期刊导航

论文摘要

基于距离度量学习的半监督多视角谱聚类算法

ASemi-supervisedMultiviewSpectralClusteringAlgorithmBasedonDistanceMetricLearning

作者:杨金鸿(哈尔滨工程大学计算机科学与技术学院);邓廷权(哈尔滨工程大学理学院)

Author:YangJinhong(CollegeofComputerSci.andTechnol.,HarbinEng.Univ.);DengTingquan(CollegeofSci.,HarbinEng.Univ.)

收稿日期:2015-03-07          年卷(期)页码:2016,48(1):146-151

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:距离度量学习;多视角聚类;谱聚类;半监督聚类;数据挖掘

Key words:distancelearning;multiviewclustering;spectralclustering;semi supervisedclustering;datamining

基金项目:国家自然科学基金资助项目(11471001)

中文摘要

为了有效利用少量先验信息提高多视角数据聚类效果,提出一种基于距离度量学习的半监督多视角谱聚类算法(简称ML SMC)。首先,利用距离度量学习引入先验信息,将多视角数据映射到反映先验约束条件的空间。然后,根据相似性构造每个视角的视图,将多视角聚类问题转化为最小正则割的图划分问题。实验结果表明,ML SMC算法聚类结果的精度优于3种经典的多视角聚类算法和4种半监督单视角聚类算法。并且通过利用少量先验信息ML SMC算法能够有效提高聚类效果。

英文摘要

In order to take the advantage of prior knowledge to improve clustering performance,based on distance metric learning (ML SMC),a semi supervised multi view spectral clustering algorithm was proposed.The prior knowledge was incorporated into clustering process by distance metric learning, which mapped data into a new space which subjects to prior knowledge.Each graph of views was constructed according to similarity metric, and then the problem of multi view clustering was formulated as an optimization problem of minmum normalized cut.Experiments showed that the quality of clustering results of ML SMC is superior to three classical multiview clustering algorithms and four semi supervised single view clustering algorithms,and the precision of ML SMC could be significantly improved by incorporating some prior knowledge.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065