期刊导航

论文摘要

网络控制系统变采样周期智能动态调度策略

Variable-sampling Period Intelligent Dynamic Scheduling for Networked Control Systems

作者:沈艳(电子科技大学 机械电子工程学院,四川 成都 610054);郭兵(四川大学计算机学院)

Author:Shen Yan(School of Mechatronics Eng.,Univ. of Electronic Sci. and Technol. of China,Chengdu 610054,China);Guo Bing(School of Computer Science & Engineering, SiChuan University)

收稿日期:2009-05-19          年卷(期)页码:2010,42(1):162-167

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:网络控制系统;变采样;智能动态调度;BP神经网络;反馈控制

Key words:networked control systems; variable-sampling period;intelligent dynamic scheduling; BP neural network; feedback control

基金项目:863国家高新技术研究发展计划(2008AA01Z105)

中文摘要

针对网络控制系统中采样周期时变不确定性对控制性能和网络运行性能的影响,提出一种基于反馈控制原理和预测机理的智能动态调度策略。该策略利用网络资源利用率、截止期错过率以及误差绝对值积分(Integral of the Absolute Error,IAE)对消息进行反馈控制调度,保证网络利用率、截止期错过率以及控制性能保持在期望的范围内;利用BP神经网络对网络利用率和数据包执行时间进行预测,实时调整控制系统的采样周期,以适应网络中信息流的变化。仿真试验结果表明该调度算法既能满足控制系统的性能,又提高网络资源的利用率。

英文摘要

In order to study the effects of time-varied uncertainty of the sampling period on control performance and network performance in the networked control system,an intelligent dynamic scheduling strategy was proposed based on feedback control and prediction mechanism.In this strategy, network resources utilization and deadline miss rate, and IAE were used as feedback control scheduling to schedule messages. BP neural network was used to predict the network resource utilization and data packet execution time to adjust the sampling period and improve the network performance. The simulation results showed that the scheduling algorithm not only met the control performance, but also improved the utilization of network resources.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065