期刊导航

论文摘要

基于CPSO-LSSVM的陀螺仪故障趋势预测

Gyroscope Failure Trend Prediction Based on CPSO-LSSVM Algorithm

作者:高云红(1.南京航空航天大学 自动化学院,江苏 南京 210016;2.沈阳航空工业学院 自动化学院,辽宁 沈阳 110136);李一波(沈阳航空工业学院 自动化学院)

Author:Gao Yunhong(1.College of Automation Eng., Nanjing Univ. of Aeronautics and Astronautics, Nanjing 210016,China;2.College of Automation Eng., Shenyang Insti. of Aeronautical Eng., Shenyang 110136,China );Li Yibo(College of Automation Eng., Shenyang Insti. of Aeronautical Eng.)

收稿日期:2009-02-04          年卷(期)页码:2010,42(2):177-181

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:最小二乘支持向量机;混沌粒子群算法;交叉验证;陀螺仪;故障趋势预测

Key words:least squares support vector machine; chaos particle swarm optimization algorithm; cross validation; gyroscope; failure trend prediction

基金项目:国家自然科学基金资助项目(60804025)

中文摘要

为了提高最小二乘支持向量机(LSSVM)的学习性能和泛化能力,提出了混沌粒子群优化(CPSO)算法和交叉验证(CV)算法相结合的LSSVM参数寻优方法。CPSO算法将混沌搜索引入到粒子群算法中产生初始混沌粒子,并在粒子运动中不断加入混沌扰动,实现LSSVM参数的自动选取。利用交叉验证误差构造粒子的适应度函数,为参数选择提供评价标准。陀螺仪随机漂移是影响陀螺仪性能可靠性的主要因素,将经过参数寻优的LSSVM用于建立陀螺仪随机漂移的时间序列预测模型,预测值与实际值相差较小,可为陀螺仪的故障趋势预测提供依据。实验结果表明CPSO算法是选取LSSVM参数的有效方法,所建的回归模型具有较高的预测精度。

英文摘要

In order to improve the learning performance and generalization ability of the least squares support vector machine (LSSVM), Chaos particle swarm optimization algorithm (CPSO) combined with k-fold cross validation (CV) was proposed for selecting the optimal parameters of LSSVM. Chaotic search was introduced to PSO algorithm to generate the initial chaotic particles and chaotic interrupt was added to the particles in the motions for the selection of LSSVM parameters automatically. CV error was used to construct the fitness function of particles as the assessing criteria of the LSSVM parameters choice. Gyroscope random drift was the main factors affecting the reliability of the gyroscope performance. LSSVM regression model based on CPSO-CV algorithm was used to establish time series prediction model of gyroscopes random drift for gyroscope failure trend prediction. The results showed that the proposed method is an effective approach for LSSVM parameter selection and the regression model has a better prediction precision.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065