期刊导航

论文摘要

高性能混凝土徐变系数的公式设计

The Formula Design of Creep Coefficient for High Performance Concrete

作者:郭磊(1. 华北水利水电学院,河南 郑州 450011;2. 河海大学 水利水电工程学院,南京210098);朱岳明(河海大学 水利水电工程学院);朱明笛(河海大学 水利水电工程学院);张晓悦(河海大学 水利水电工程学院)

Author:Guo Lei(1.North China Univ. of Water Resources and Electric Power., Zhengzhou 450011,China;2.College of Water Conservancy and Hydroelectric Eng., Hohai Univ., Nanjing 210098,China);Zhu Yueming(College of Water Conservancy and Hydroelectric Eng., Hohai Univ.);Zhu Mingdi(College of Water Conservancy and Hydroelectric Eng., Hohai Univ.);Zhang Xiaoyue(College of Water Conservancy and Hydroelectric Eng., Hohai Univ.)

收稿日期:2008-08-04          年卷(期)页码:2010,42(2):75-81

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:高性能混凝土;徐变系数;预测模型;标准状态;非标准状态

Key words:high performance concrete; creep coefficients; prediction model; standard state; nonstandard state

基金项目:国家自然科学基金重点资助项目(50539010;50779010;50579080)

中文摘要

针对目前现有的一些徐变预测模型中,混凝土材料参数大都是通过大量的试验数据回归分析得到的,具有一定的局限。围绕建立一套方便实用且兼顾一定预测精度的徐变预测模型公式进行了一些探讨,在预测精度较高、影响参数考虑较为合理的模型基础上,结合高性能混凝土材料的特点,根据现有的试验资料,参考国外有关模型,提出了简单实用且兼顾一定计算精度的徐变系数实用预测模型。参照国内规范进行了非标准状态下多因素多水平的非线性影响分析,采用将其他因素控制在标准状态而仅仅变化这一因素的方法。评价了该模型的可行性。在对高性能混凝土徐变预测上可将各个影响因素量化处理,避免了需要大量试验资料的局限,弥补了普通混凝土预测模型考虑因素较为单一的缺陷,计算较简便,而且符合精度较好。

英文摘要

Based on the existing experimental data and overseas-related models, a convenient and practical concrete creep coefficients prediction model which has characteristics of high performance concrete with certain accuracy were proposed. A multi-factor and multi-level nonlinear influence analysis under nonstandard situation was carried out. In order to determine its influence function on concrete creep, one factor was changed while other factors were kept in the standard state. By the quantification of every influencing factor on high performance concrete creep prediction , which is characterized of easier calculation and higher accuracy, it can be avoided to collect a large number of test data and the deficiency of single factor considered on ordinary concrete creep prediction are eliminated.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065