期刊导航

论文摘要

基于图像邻域特性的高斯噪声去噪

Gaussian Noise Removal on the Local Feature of Image

作者:琚生根(四川大学计算机学院);何坤(四川大学计算机学院);周激流(四川大学计算机学院)

Author:Ju Shenggen(School of Computer,Sci. Sichuan Univ.);He Kun(School of Computer,Sci. Sichuan Univ.);Zhou Jiliu(School of Computer,Sci. Sichuan Univ.)

收稿日期:2009-10-15          年卷(期)页码:2010,42(3):139-144

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:高斯噪声;邻部特性;形态学;噪声去除

Key words:Gaussian noise;local feature;morphologic;noise removal

基金项目:高等学校博士学科点专项科研基金资助项目(20060610021)

中文摘要

针对传统高斯噪声去噪算法残余噪声较大的不足,根据噪声对图像视觉的影响,提出了基于像素邻域相关性的去噪算法。首先运用邻域像素的连续性判断像素点是否位于平滑区内;其次对非平滑区根据边缘和纹理的局部连续性运用形态学提取图像边缘和纹理进而定位噪声点;最后对平滑区内的噪声运用自适应邻域进行去噪处理,对非平滑区的噪声仅利用非平滑区的邻域进行平滑,实现了对高斯噪声先定位再去噪。经实验结果验证:与传统方法相比,该算法较好地抑制了图像平滑区内噪声,提高了去噪后图像的视觉效果。

英文摘要

In order to overcome the shortcomings of traditional noise removal methods which the remaining noise is still large, an algorithm which was based on the local feature of the image was introduced for removing the Gaussian noise according to the impact of Gaussian noise on visual images. Firstly, the pixel was or wasn’t lie smoothing domain was estimated based on the local pixels’ continuity in the image. Secondly, the edge and texture of the image were extract by morphologic according to the local continuity properties of texture and edge, then the pixel contaminated with Gaussian noises was estimated. Lastly, the noise point in the smoothing domain was removed making use of the adaptive neighborhood, local smoothing for the edge or texture pixel. Comparing to the traditional method, this algorithm could preferably remove the noise and improved image visual effect.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065