期刊导航

论文摘要

基于量子粒子群算法的双阈值图像分割方法

Dual-threshold Image Segmentation Method Based on QPSO Algorithm

作者:童小念(中南民族大学 计算机科学学院);施博(中南民族大学 计算机科学学院);王江晴(中南民族大学 计算机科学学院)

Author:Tong Xiaonian(College of Computer Science, South-Central University for Nationalities);Shi Bo(College of Computer Science, South-Central University for Nationalities);Wang Jiangqing(College of Computer Science, South-Central University for Nationalities)

收稿日期:2009-10-26          年卷(期)页码:2010,42(3):132-138

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:量子粒子群算法;遗传算法;粒子群算法;最大类间方差;边界控制策略;双阈值图像分割

Key words:QPSO; GA; PSO; Otsu; Boundary-controlled strategy; Dual-threshold image segmentation

基金项目:国家自然科学基金资助项目(60975021)

中文摘要

为了提高图像分割效率,将量子粒子群算法QPSO应用于图像阈值分割领域,并在QPSO算法基础上提出了一种基于边界控制的量子粒子群阈值分割算法BQPSO。改进算法BQPSO引入了边界控制策略,使得飞越搜索区域的粒子不再聚集到区域的边界,而是回到搜索区域内边界附近的某一位置,保持了群体的多样性,有效地避免了算法陷入局部最优解,增强了算法的全局搜索能力。实验结果表明,与遗传算法GA、粒子群算法PSO和标准量子粒子群算法QPSO的阈值寻优结果相比较,BQPSO算法在运算效率、阈值搜索精度和稳定性以及图像分割效果等方面均具有明显的优势

英文摘要

In order to improve the efficiency of image segmentation, Quantum-behaved Particle Swarm Optimization (QPSO ) algorithm was used to image threshold segmentation, and BQPSO, an improved threshold searching algorithm based on QPSO, was proposed. BQPSO algorithm introduced a boundary-controlled strategy to reset particles back to a random point around the border in search region when particles were massed on border, so to prevent them from aggregating at the border. By Boundary-controlled strategy, a diversity of the swarm was maintained , local optimal solution was avoided efficiently, and the global search ability was enhanced. The experiment result showed that, compared with GA,PSO and QPSO, BQPSO algorithm possess obviously advantage in threshold searching efficiency, searching accuracy and image segmentation effect.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065