期刊导航

论文摘要

求解TSP问题的抗体克隆优化算法

A Novel Antibody Clone Optimization Algorithm for TSP

作者:张瑜(海南师范大学 信息学院);李涛(四川大学计算机学院);吴丽华(海南师范大学信息学院);夏峰(海南师范大学信息学院)

Author:Zhang Yu(College of Info. Sci. and Technol.,Hainan Normal Univ.);Li Tao(School of Computer Sci.,Sichuan Univ.);Wu Lihua(College of Info. Sci. and Technol.,Hainan Normal Univ.);Xia Feng(College of Info. Sci. and Technol.,Hainan Normal Univ.)

收稿日期:2009-04-29          年卷(期)页码:2010,42(3):127-131

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:人工免疫系统;TSP;MHC;抗体克隆算法;优化

Key words:artificial immune system;TSP;MHC;antibody clone algorithm;optimization

基金项目:国家自然科学基金资助项目(60573130;60873246);国家863计划资助项目(2006AA01Z435);教育部博士点基金资助项目(20070610032);海南师范大学引进博士科研启动项目(00203020214)

中文摘要

为解决传统求解TSP问题(Traveling Salesman Problem)的方法所固有的组合爆炸问题,提出了一种新的基于MHC(Major Histocompatibility Complex,主要组织相容性复合体)的抗体克隆优化算法(Antibody Clone Optimization Algorithm inspired by MHC,COAMHC)。该算法应用MHC分子单倍型特性将优秀抗体基因保存为MHC串,并通过疫苗接种遗传至子代以增强其局部搜索能力;应用MHC分子多态性并通过基因突变以及随机引入新抗体基因来提高抗体群多样性,以增强其全局搜索能力。通过TSP问题的仿真实验表明,该算法在收敛速度、和求解精度方面比经典克隆选择算法CLONALG性能更好

英文摘要

To address the traditional Traveling Salesman Problems (TSP) with the combinatorial explosion property, a novel MHC-inspired antibody clone optimization algorithm (COAMHC) was proposed by drawing inspiration from the features of Major Histocompatibility Complex (MHC) in the biological immune system. COAMHC preserves elitist antibody genes through the MHC string to improve its local search capability and improves the diversity of antibody population by gene mutation and some new random immigrant antibodies to enhance its global search capability. The experiments of comparing COAMHC with the canonical clone selection algorithm (CLONALG) were carried out for the TSP and results indicated that the performance of COAMHC is better than that of CLONALG. The COAMHC algorithm provides new opportunities for solving previously intractable optimization problems such as TSP.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065