期刊导航

论文摘要

基于置信度的深度图融合

Fusion of Depth Maps with Confidence of Points

作者:刘怡光(四川大学计算机学院);董鹏飞(四川大学计算机学院);李杰(四川大学计算机学院);都双丽(四川大学计算机学院)

Author:liuyiguang();dongpengfei();lijie();dushuangli()

收稿日期:2016-01-07          年卷(期)页码:2016,48(4):101-106

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:多目立体视觉; 三维重建; 深度图融合;置信度;迭代最小二乘法

Key words:multiple view stereo; 3D reconstruction; fusion of depth maps; confidence; iterative least square algorithm

基金项目:国家自然科学基金资助项目:基于曲面局部微分几何特性的图像配准与深度计算(61571313),四川省科技厅资助项目:影像超分辨3D化关键技术及相关战略性新兴产品培育国际合作研究(2014HH0048)

中文摘要

由于匹配信息弱或噪声影响,深度计算精度难以保证,故深度图融合是多目立体视觉三维重建中的关键部分。为此,本文提出了一种基于置信度的抗噪融合算法。该方法首先对每幅深度图进行修正,利用一致性检测剔除大多数错误点并填补某些空洞。其次,通过保留那些在自身邻域内具有最高置信度的三维点以删除冗余。最后,将深度图反投影到三维空间,采用迭代最小二乘法进一步优化三维点并剔除离群点。通过在标准测试数据集上与其他算法比较,验证了该方法的有效性。

英文摘要

Due to the weakness of match information and influence of noise, the calculation precision of depth cannot be guaranteed. Therefore fusion of multiple depth maps is a typical technique for multi-view stereo (MVS) reconstruction. This paper introduced an antinoise fusion method that took advantage of the confidence of 3D points. This method first performed a refinement process on every depth map to enforce consistency over its neighbors, which could remove most errors and fill many holes simultaneously. After refinement, it deleted redundancies of every point by retaining the point that its confidence was maximal in its neighbors. Finally, it obtained a point cloud by merging all depth maps and used an iterative least square algorithm to further eliminate the noise points. The quality performance of the proposed method was evaluated on several data sets and the comparison with other algorithm was also given in the paper.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065