期刊导航

论文摘要

一种基于免疫蚁群混合算法的TSP求解模型

A TSP Solving Model Based on Immune Ant Colony Hybrid Algorithm

作者:刘勇(中国科学院 成都计算机应用研究所;中国空气动力研究与发展中心);刘念(四川大学电气信息学院);刘孙俊(成都信息工程学院软件工程学院)

Author:Liu Yong(Chengdu Inst. of Computer Application,Chinese Academy of Sciences;China Aerodynamics Research and Development Center);Liu Nian(School of Electrical Eng. and Info.,Sichuan Univ.);Liu Sunjun(Chengdu Univ. of Info. Technol.)

收稿日期:2009-11-13          年卷(期)页码:2010,42(3):121-126

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:人工免疫;蚁群算法;旅行商问题

Key words:artificial immunity; ant colony algorithm; TSP

基金项目:国家863计划基金资助项目(2008AAO1Z402);四川省技术创新基金资助项目(2008PT013)

中文摘要

为了解决传统蚁群算法搜索速度慢、容易出现早熟、停滞的缺点,以及传统免疫算法由于反馈信息利用不足存在大量无为的冗余迭代导致求解效率低的缺点,提出了一种蚁群与免疫克隆相结合的混合算法,该算法在前期采用免疫算法来产生蚁群算法的初始信息分布,在后期根据路径浓度抑制机制调整路径上的信息量,从而保持了蚁群多样性,并将该算法用于求解旅行商问题进行计算机仿真,从实验结果可以看出,该算法具有针对性的改进,是一种收敛速度和寻优能力都较好的优化方法。

英文摘要

In order to solve the problems caused by the traditional ant colony algorithm, such as searching slowly, cling to prematurity, standstill, and the inefficient and useless redundant iteration caused by feedback underutilized in traditional immune algorithm,an algorithm combined ant colony algorithm and Immune Clone hybrid algorithm was proposed. With this algorithm, initial information distribution of ant colony algorithm was generated by immune algorithm in the early work, and the information on the path was adjusted by path concentration of inhibition mechanism at latter work, which kept diversity of ant colony. The algorithm was used to solve the traveling salesman problem for computer simulation.The experimental results showed that the algorithm has targeted improvements, good convergence speed and optimization capabilities.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065