期刊导航

论文摘要

基于二阶拉格朗日插值求解动力响应的逐步积分法

A New Step-by-step Integration Method Based on Quadratic Lagrangian Interpolation for Dynamic Response

作者:袁晓彬(四川大学 建筑与环境学院);王清远(四川大学 建筑与环境学院);游翔(四川大学 建筑与环境学院);方冬慧(四川大学 建筑与环境学院)

Author:Yuan Xiaobin(School of Architecture and Environment,Sichuan Univ.);Wang Qingyuan(School of Architecture and Environment,Sichuan Univ.);You Xiang(School of Architecture and Environment,Sichuan Univ.);Fang Donghui(School of Architecture and Environment,Sichuan Univ.)

收稿日期:2009-06-25          年卷(期)页码:2010,42(3):84-88

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:动力学响应;逐步积分法;二阶拉格朗日插值;稳定性

Key words:dynamic response;step by step integration method;quadratic Lagrangian interpolation;stability

基金项目:教育部博士点基金资助项目(200806100044);教育部创新团队项目(IRT0640)

中文摘要

为了求解结构动力学响应,提出了一种新的逐步积分法。通过二阶拉格朗日插值在局部时间域上对位移进行离散,并给出逐步递推计算格式;采用参数θ控制算法的稳定性和计算精度。该方法具有稳定性好、二次精度、自起步的、计算格式简单的特点。通过选取不同的θ值与Newmark法、Wilson法、精细积分法的数值结果对比分析表明:该方法是正确而又可靠的。

英文摘要

In order to obtain structural dynamic response,a new step-by-step integration method was presented. Thismethod was introduced by quadratic Lagrangian interpolation of the nodal displacements within local time domain. Single parameters θ was varied to obtain good stability and accuracy. This method is characterized with good stability, quadric precision, self-starting and simple numerical format. Compared with the methods of Newmark,Wilson, and precise integration at different θ, this method is more accurate and reliable.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065