期刊导航

论文摘要

基于内嵌基因表达式编程的函数优化

Function Optimization Based on Embedded Gene Expression Programming

作者:向勇(成都电子机械高等专科学校计算机工程系);唐常杰(四川大学 计算机学院);曾涛(天津师范大学 计算机与信息工程学院);张敏(成都电子机械高等专科学校 计算机工程系)

Author:Xiang Yong(Dept. of Computer Eng.,Chengdu Electromechanical College);Tang Changjie(School of Computer Sci., Sichuan Univ.);Zeng Tao(Computer and Info. Eng. College,Tianjin Normal Univ.);Zhang Min(Dept. of Computer Eng.,Chengdu Electromechanical College)

收稿日期:2009-06-18          年卷(期)页码:2010,42(4):91-96

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:函数优化;遗传算法;基因表达式编程;基因内区

Key words:function optimization; Genetic Algorithm(GA);Gene Expression Programming(GEP); intron

基金项目:国家自然科学基金

中文摘要

基因表达式编程(GEP)算法在解码时常存在未表达的基因内区,在解决函数优化问题时存在缺陷,使得对简单函数的优化性能不如遗传算法(GA),而对复杂函数优化收敛速度较慢。为了改善基因表达效率和提高优化性能,做了下列工作:提出了新的基因解码方法,形成了内嵌基因表达式编程算法EGEP;设计了适合优化问题的个体编码方案;分析了个体的表达空间。实验表明,EGEP对简单函数优化的性能优于传统遗传算法;EGEP提高了对复杂函数的优化能力,即使在运行辈数降低200倍时,得到的性能仍然优于传统GEP和遗传算法。

英文摘要

The Gene Expression Programming(GEP) usually exists some un-expressed introns,the performance may be lower than GA in simple function optimization and the speed is un-satisfied to complicated optimization task. To improve the expression efficiency of gene space and the performance for function optimization, an evolutionary algorithm EGEP (Embedded Gene Expression Programming) was proposed based on a new decoding method. A new coding method for individual was designed which was suited for function optimization. And the expression space of individual was analyzed. Experiments showed that EGEP is superior to GA in simple function optimization. Even if the run generation reduced by 200 times, the performance of EGEP still surpasses GEP and GA in complex function optimization.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065