期刊导航

论文摘要

考虑噪声扰动干扰的室内行人跟踪方法

Indoor Person Tracking Method in Considering Interference Noise Perturbation

作者:李伟(兰州理工大学)

Author:liwei()

收稿日期:2015-12-01          年卷(期)页码:2016,48(6):172-179

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:行人跟踪; H∞滤波; 无极变换; 颜色直方图

Key words:pedestrian tracking; H-infinity filtering ; unscented transformation; color histogram

基金项目:“智能环境下音视频融合的多说话人跟踪研究”(612630319)

中文摘要

室内环境下行人跟踪常面临光照突变、遮挡及相似颜色特征干扰等问题,为增强这种突变情况下的跟踪稳定性和精确性,提出了一种考虑噪声扰动问题的均方根无迹H∞滤波跟踪方法。首先,在扩展H∞滤波框架内采用无迹变换取代复杂的雅克比矩阵计算,通过高斯密度近似滤波分布,减小观测方程线性近似误差的同时,降低系统模型噪声对估计值的干扰;接着,对目标状态协方差矩阵的均方根进行柯西分解,通过简化矩阵对角运算的方法,降低滤波器的计算消耗,并消弱系统观测噪声对观测值的扰动影响。视频跟踪实验表明:同传统的UKF、EKF和PF非线性方法相比,本文方法有效提升了突变情况下的行人跟踪精度,并降低了时间消耗。

英文摘要

Person tracking problem under the indoor environment often face light, occlusion and similar color interference, in order to enhance the tracking stability and accuracy in the situation, this paper proposes a root mean square (RMS) unscented H-infinity filtering method in Considering interference noise perturbation. First of all, Unscented transformation is used to replace the complex Jacobi matrix calculation under the framework of extended H-infinity filter. The method, which using Gaussian density approximating filter distribution, reduce the linear approximation error, and reduce the interference of system model noise to the estimation values. Second, the Cauchy decomposition to the state covariance matrix RMS, which uses diagonal elements to calculate, reduce the disturbance of observation noise error and filter calculation consumption. Video tracking experiments showed that compared with the EKF、UKF and PF algorithm, the proposed algorithm can effectively improve the pedestrian tracking accuracy in mutation, and reduce the time consumption.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065