期刊导航

论文摘要

基于贝叶斯推理的标准k-ε湍流模型参数识别

Identification of Parameters for Standard k-ε Turbulence Model Based on Bayesian Inference

作者:朱嵩(广东省电力设计研究院);刘国华(浙江大学建筑工程学院);毛欣炜(浙江大学建筑工程学院);程伟平(浙江大学建工学院);黄跃飞(清华大学水利水电工程系)

Author:Zhu Song(Guangdong Electric Power Design Inst.);Liu Guohua(College of Civil Eng. and Architecture, Zhejiang Univ.);Mao Xinwei(College of Civil Eng. and Architecture, Zhejiang Univ.);Cheng Weiping(College of Civil Eng. and Architecture, Zhejiang Univ.);Huang Yuefei(Dept. of Hydraulic Eng., Tsinghua Univ.)

收稿日期:2009-09-11          年卷(期)页码:2010,42(4):78-82

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:标准k-ε湍流模型;参数识别;Metropolis-Hastings算法;贝叶斯推理;反问题

Key words:k-ε turbulence model;parameter identification;Metropolis-Hastings algorithm;Bayesian inference;inverse problems

基金项目:国家973计划资助项目(2005CB724202);国家自然科学基金资助项目(50879075)

中文摘要

为了降低湍流模型湍流参数不确定性给工程湍流问题求解带来数值误差,以后台阶流动为例研究了适用范围很广的k-ε湍流模型的参数识别问题。针对模型和实验数据的不确定性而采用了贝叶斯概率反演方法,该方法集成了有限单元法的正向计算和Metropolis-Hastings抽样算法的反向计算,从而给出在流速测量值已知的条件下标准k-ε湍流模型参数的后验概率分布。算例计算表明,采用参数识别后的参数值进行计算比传统推荐值有效地降低了数值误差。

英文摘要

To decrease the numerical error in the engineering turbulence problem, which comes from the uncertainty of turbulence model, a Bayesian method was developed to identify the parameters for widely used k-ε turbulence model based on the back step flow. The method combines direct computation with finite element method and inverse computation with Metropolis-Hastings sampling algorithm, which can give the posterior distribution of standard k-ε model parameters once the velocity on some observation sites are known. Case computation indicated that after parameter identification the computation has a lower numerical error than that without parameter identification.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065