期刊导航

论文摘要

非负矩阵分解的一个约束稀疏算法

A Constrained Sparse Algorithm for Nonnegative Matrix Factorization

作者:李臣明(河海大学 计算机与信息学院);张师明(河海大学 计算机与信息学院);李昌利(河海大学 计算机与信息学院)

Author:Li Chenming(Collage of Computer and Info. Eng.,Hohai Univ.);Zhang Shiming(Collage of Computer and Info. Eng.,Hohai Univ.);Li Changli(Collage of Computer and Info. Eng.,Hohai Univ.)

收稿日期:2014-06-11          年卷(期)页码:2015,47(2):108-111

期刊名称:工程科学与技术

Journal Name:Advanced Engineering Sciences

关键字:非负矩阵分解(NMF);稀疏性;最小相关系数;2-范数

Key words:non-negative matrix factorization (NMF);sparseness;the least correlated component constraints;2-norm

基金项目:河海大学中央高校基本科研业务费项目(2013B32514);国家自然科学基金资助项目(61101211)

中文摘要

针对非负矩阵分解中系数矩阵不够稀疏的问题,提出一个新的约束非负矩阵分解算法。在经典非负矩阵分解的优化函数中施加稀疏性约束,并对分解系数矩阵施加最小相关约束,与此同时对基矩阵施加2-范数约束,在保证非负约束和分解精度的基础上,使分解后得到的矩阵尽可能稀疏,这样可以更加节省存储空间,分解结果更优。对比实验表明,提出的算法具有更好的稀疏性,且实验误差更小。

英文摘要

Aiming at the lack of sparseness of factorization matrix in the nonnegative matrix factorization (NMF) algorithm,a new constrained NMF algorithm was proposed.A sparseness constraint was added to the original nonnegative matrix factorization (NMF) algorithm,and the minimum correlation constraint was imposed on the coefficient matrices and the 2-norm constraint was imposed on the basis matrix at the same time,which can ensure the non-negative constraint and accurate decomposition,and can also make the decomposed matrix sparse as far as possible,saving more storage space.Comparison with the experiments showed that the propose algorithm has the better sparseness and smaller error than both the original NMF algorithm and the SNMF algorithm.

关闭

Copyright © 2020四川大学期刊社 版权所有.

地址:成都市一环路南一段24号

邮编:610065